Divergent picobirnaviruses in human feces.

Genome Announcements 05/2014; 2(3). DOI: 10.1128/genomeA.00415-14
Source: PubMed

ABSTRACT The near-complete genomes of two picobirnaviruses (PBVs) in diarrheal stool samples, human picobirnaviruses D and E (HuPBV-D and -E), were genetically characterized. Their RNA-dependent RNA polymerase (RdRp) protein sequences had <66% identities to known PBVs. Due to a single nucleotide insertion, the open reading frame 2 (ORF2) in segment 1 of HuPBV-D was interrupted by a stop codon. A small stem-loop structure overlying the stop codon may result in translational readthrough into the rest of ORF2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation sequencing (NGS) approaches rapidly produce millions to billions of short reads, which allow pathogen detection and discovery in human clinical, animal and environmental samples. A major limitation of sequence homology-based identification for highly divergent microorganisms is the short length of reads generated by most highly parallel sequencing technologies. Short reads require a high level of sequence similarities to annotated genes to confidently predict gene function or homology. Such recognition of highly divergent homologues can be improved by reference-free (de novo) assembly of short overlapping sequence reads into larger contigs. We describe an ensemble strategy that integrates the sequential use of various de Bruijn graph and overlap-layout-consensus assemblers with a novel partitioned sub-assembly approach. We also proposed new quality metrics that are suitable for evaluating metagenome de novo assembly. We demonstrate that this new ensemble strategy tested using in silico spike-in, clinical and environmental NGS datasets achieved significantly better contigs than current approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; 43(7). DOI:10.1093/nar/gkv002 · 8.81 Impact Factor

Full-text (3 Sources)

Available from
Jun 17, 2014