Observation of stimulated Raman amplification in silicon waveguides.

California Univ., Los Angeles, CA, USA
Optics Express (Impact Factor: 3.55). 08/2003; 11(15):1731-9. DOI: 10.1364/OE.11.001731
Source: PubMed

ABSTRACT We report the first observation of Stimulated Raman Scattering (SRS) in silicon waveguides. Amplification of the Stokes signal, at 1542.3 nm, of up to 0.25 dB has been observed in Silicon-on-Insulator (SOI) waveguides, using a 1427 nm pump laser with a CW power of 1.6 W, measured before the waveguide. Two-Photon-Absorption (TPA) measurements on these waveguides are also reported, and found to be negligible at the pump power where SRS was observed.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices.
    Scientific Reports 09/2013; 3:2674. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this Letter, we propose an all-optical circuit for a cascadable and integrable logic inverter based on stimulated Raman scattering. A maximum product criteria for noise margin is taken to analyze the cascadability of the inverter. Variation of noise margin for different model parameters is also studied. Finally, the time domain response of the inverter is analyzed for different widths of input pulses.
    Optics Letters 12/2013; 38(23):5192-5. · 3.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An approximate method of modelling of Raman generation in silicon-on-insulator (SOI) rib waveguide with DBR/F-P resonator including spatial field distribution and nonlinear effects such as Raman amplification and two photon absorption (TPA), is developed. In threshold analysis of steady-state Raman laser operation, an analytical formula relating threshold pump power to the system parameters is obtained. The analysis of the above threshold operation is based on an energy theorem. In exact energy conservation relation, we approximate the Stokes field distributions by that existing at the threshold, whereas the approximate pump field distributions are obtained by integrating the equations for the pump signal using the linear (threshold) pump field distributions and the threshold Stokes field distributions. An approximate, semi-analytical expression related the Raman output power to the pump power and system parameters is derived. Our calculations remain in a good agreement with the exact numerical solutions.
    Opto-Electronics Review 12/2013; 21(4):382. · 0.92 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014