Article

Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome.

FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, London, Ontario, Canada.
Nature medicine (Impact Factor: 27.14). 07/2009; 15(6):641-8. DOI:10.1038/nm.1965
Source: PubMed

ABSTRACT Staphylococcal superantigens are pyrogenic exotoxins that cause massive T cell activation leading to toxic shock syndrome and death. Despite the strong adaptive immune response induced by these toxins, infections by superantigen-producing staphylococci are very common clinical events. We hypothesized that this may be partly a result of staphylococcal strains having developed strategies that downregulate the T cell response to these toxins. Here we show that the human interleukin-2 response to staphylococcal superantigens is inhibited by the simultaneous presence of bacteria. Such a downregulatory effect is the result of peptidoglycan-embedded molecules binding to Toll-like receptor 2 and inducing interleukin-10 production and apoptosis of antigen-presenting cells. We corroborated these findings in vivo by showing substantial prevention of mortality after simultaneous administration of staphylococcal enterotoxin B with either heat-killed staphylococci or Staphylococcus aureus peptidoglycan in mouse models of superantigen-induced toxic shock syndrome.

0 0
 · 
0 Bookmarks
 · 
104 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Toxic shock syndrome (TSS) is caused by an overwhelming host-mediated response to bacterial superantigens produced mainly by Staphylococcus aureus and Streptococcus pyogenes. TSS is characterized by aberrant activation of T cells and excessive release of pro-inflammatory cytokines ultimately resulting in capillary leak, septic shock, multiple organ dysfunction and high mortality rates. No therapeutic or vaccine has been approved by the U.S. Food and Drug Administration for TSS, and novel therapeutic strategies to improve clinical outcome are needed. Mesenchymal stromal (stem) cells (MSCs) are stromal cells capable of self-renewal and differentiation. Moreover, MSCs have immunomodulatory properties, including profound effects on activities of T cells and macrophages in specific contexts. Based on the critical role of host-derived immune mediators in TSS, we hypothesized that MSCs could modulate the host-derived proinflammatory response triggered by Staphylococcal enterotoxin B (SEB) and improve survival in experimental TSS. Effects of MSCs on proinflammatory cytokines in peripheral blood were measured in wild-type C57BL/6 mice injected with 50 mug of SEB. Effects of MSCs on survival were monitored in fatal experimental TSS induced by consecutive doses of D-galactosamine (10 mg) and SEB (10 mug) in HLA-DR4 transgenic mice. Despite significantly decreasing serum levels of IL-2, IL-6 and TNF induced by SEB in wild-type mice, human MSCs failed to improve survival in experimental TSS in HLA-DR4 transgenic mice. Similarly, a previously described downstream mediator of human MSCs, TNF-stimulated gene 6 (TSG-6), did not significantly improve survival in experimental TSS. Furthermore, murine MSCs, whether unstimulated or pre-treated with IFNgamma, failed to improve survival in experimental TSS. Our results suggest that the immunomodulatory effects of MSCs are insufficient to rescue mice from experimental TSS, and that mediators other than IL-2, IL-6 and TNF are likely to play critical mechanistic roles in the pathogenesis of experimental TSS.
    BMC Immunology 01/2014; 15(1):1. · 2.61 Impact Factor
  • The Journal of allergy and clinical immunology 05/2013; · 12.05 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20-80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune "priming" or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity.
    Frontiers in Immunology 01/2014; 4:507.

Full-text

View
0 Downloads
Available from