Article

Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position: what does MRI add to X-ray CT localization of titanium clips placed in the excision cavity wall?

Department of Academic Radiotherapy, Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
International journal of radiation oncology, biology, physics (Impact Factor: 4.59). 07/2009; 74(4):1276-82. DOI: 10.1016/j.ijrobp.2009.02.028
Source: PubMed

ABSTRACT To compare tumor bed (TB) volumes delineated using magnetic resonance imaging plus computed tomography and clips (MRCT) with those delineated using CT and clips (CT/clips) alone in postlumpectomy breast cancer patients positioned prone and to determine the value of MRCT for planning partial breast irradiation (PBI).
Thirty women with breast cancer each had 6 to 12 titanium clips secured in the excision cavity walls at lumpectomy. Patients underwent CT imaging in the prone position, followed by MRI (T(1)-weighted [standard and fat-suppressed] and T(2)-weighted sequences) in the prone position. TB volumes were delineated separately on CT and on fused MRCT datasets. Clinical target volumes (CTV) (where CTV = TB + 15 mm) and planning target volumes (PTV) (where PTV = CTV + 10 mm) were generated. Conformity indices between CT- and MRCT-defined target volumes were calculated (ratio of the volume of agreement to total delineated volume). Discordance was expressed as a geographical miss index (GMI) (where the GMI = the fraction of total delineated volume not defined by CT) and a normal tissue index (the fraction of total delineated volume designated as normal tissue on MRCT). PBI dose distributions were generated to cover CT-defined CTV (CTV(CT)) with >or=95% of the reference dose. The percentage of MRCT-defined CTV (CTV(MRCT)) receiving >or=95% of the reference dose was measured.
Mean conformity indices were 0.54 (TB), 0.84 (CTV), and 0.89 (PTV). For TB volumes, the GMI was 0.37, and the NTI was 0.09. Median percentage volume coverage of CTV(CT) was 97.1% (range, 95.3%-100.0%) and of CTV(MRCT) was 96.5% (range, 89.0%-100.0%).
Addition of MR to CT/clip data generated TB volumes that were discordant with those based on CT/clips alone. However, clinically satisfactory coverage of CTV(MRCT) by CTV(CT)-based tangential PBI fields provides support for CT/clip-based TB delineation remaining the method of choice for PBI/breast boost radiotherapy planned using tangential fields.

0 Bookmarks
 · 
101 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Localization of the tumor bed of breast cancer is crucial for accurate planning of boost irradiation. Lumpectomy cavity and surgical clips provide localizing information about tumor bed. However, defining the tumor bed is often difficult because of presence of unclear lumpectomy cavity and lack of certain information such as absence of surgical clips. In the present study, we evaluated the feasibility of initial diagnostic PET-CT in localization of the tumor bed using deformable image registration (DIR). We selected twenty-five patients who had an initial diagnostic PET-CT performed and underwent breast-conserving surgery with surgical clips in tumor bed. In every individual patient, two target volumes were separately delineated on planning CT; 1) target volume based on surgical clips with a margin of 1 cm (TVclip) and 2) tumor volume based on 90% of maximum SUV on PET-CT registered by DIR (TVPET). The percent of TVPET in TVclip (Vin) was calculated and distance between center points of two volumes (Dcenter) was also measured. Mean Dcenter between two volumes was 1.4 cm (range, 0.33 -- 2.53). Mean Vin was 94.8% (range, 60.9-100) and 100% in 18 out of 25 patients. When compared to the center of TVclip, the center of TVPET tended to be located posteriorly (mean 0.3 cm, standard deviation 0.6), laterally (mean 0.3cm, standard deviation 0.8) and inferiorly (mean 0.4 cm, standard deviation 0.9). Initial diagnostic PET-CT can be one of the possible references to localize the tumor bed in breast cancer radiotherapy.
    Radiation Oncology 07/2013; 8(1):163. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The success of highly conformal radiotherapy techniques in the sparing of normal tissues or in dose escalation, or both, relies heavily on excellent imaging. Because of its superior soft tissue contrast, magnetic resonance imaging is increasingly being used in radiotherapy treatment planning. This review discusses the current clinical evidence to support the pivotal role of magnetic resonance imaging in radiation oncology.
    Seminars in radiation oncology 07/2014; 24(3):151-159. · 4.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The performance of Bayesian state estimators, such as the extended Kalman filter (EKF), is dependent on the accurate characterisation of the uncertainties in the state dynamics and in the measurements. The parameters of the noise densities associated with these uncertainties are, however, often treated as ‘tuning parameters’ and adjusted in an ad hoc manner while carrying out state and parameter estimation. In this work, two approaches are developed for constructing the maximum likelihood estimates (MLE) of the state and measurement noise covariance matrices from operating input–output data when the states and/or parameters are estimated using the EKF. The unmeasured disturbances affecting the process are either modelled as unstructured noise affecting all the states or as structured noise entering the process predominantly through known, but unmeasured inputs. The first approach is based on direct optimisation of the ML objective function constructed by using the innovation sequence generated from the EKF. The second approach – the extended EM algorithm – is a derivative-free method, that uses the joint likelihood function of the complete data, i.e. states and measurements, to compute the next iterate of the decision variables for the optimisation problem. The efficacy of the proposed approaches is demonstrated on a benchmark continuous fermenter system. The simulation results reveal that both the proposed approaches generate fairly accurate estimates of the noise covariances. Experimental studies on a benchmark laboratory scale heater-mixer setup demonstrate a marked improvement in the predictions of the EKF that uses the covariance estimates obtained from the proposed approaches.
    Journal of Process Control 01/2011; 21(4):585-601. · 2.18 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
May 27, 2014