Article

Hepatitis C virus envelope glycoproteins complementation patterns and the role of the ecto- and transmembrane domains.

State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Xuanwu District, Beijing, People's Republic of China.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 08/2009; 385(2):257-62. DOI: 10.1016/j.bbrc.2009.05.068
Source: PubMed

ABSTRACT We separated E1 and E2 of hepatitis C virus (HCV) genotypes 1a, 1b, and 2a into two individual expression plasmids and replaced the transmembrane domains of 1b and 2a E1 and E2 with that of genotype 1a. The complementation features of E1 and E2 as well as the contributions of both the ecto- and transmembrane domains to the formation of the E1E2 complex were evaluated using the HCV pseudoparticle(s) (HCVpp(s)) system. We demonstrated that 1aE2 could not only complement its native 1aE1, but could also complement 1bE1 as well; in genotype 1b, glycoprotein complex formation is primarily dependent on the overall biological characteristics of the intact native E1 and E2; in genotype 2a, although the interaction of intact native E1 and E2 is critical for the formation of the glycoprotein complex, the ectodomain made a greater contribution than that of the transmembrane domain. Our study provides valuable findings regarding HCV E1 and E2 biology and will be of use in both anti-HCV strategy and understanding on the mechanisms of coinfection of different HCV strains.

0 Bookmarks
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis C virus (HCV) is an enveloped virus that is about 50-70nm in diameter, has positive-strand RNA, and belongs to the genus Hepacivirus and the family Flaviridae. The detection and quantification of the core antigen, HCV nucleocapsid protein, has been successful in many trials and is considered a marker of viral replication since it presents a sequence of highly conserved amino acids, giving it high sensitivity and specificity. The E2 protein is an envelope glycoprotein of HCV with 11 glycosylation sites; most of these are well-conserved, making it a target antigen. The aim of this study is to develop high-sensitivity, low-cost diagnostic methods for HCV, which could be used for serological screening. The genomic regions encoding the core (part 136 aa) and E2 proteins of HCV were expressed in Escherichia coli Rosetta strain, cloned in expression vector pET-42a, and induced with 0.4mmolL(-1) IPTG, producing recombinant proteins that were fused to glutathione S-transferase (GST) protein, which was then purified by affinity chromatography. The immunoreactivity was assessed by Western blot, Slot Blot, and developed and improved diagnostic methods (capture, indirect, and immunoblotting enzyme-linked immunosorbent assay (ELISA)). After applying the results to the formulas for determining the quality parameters, obtained for immunoblotting method 100% sensitivity and specificity and for ELISA 100% sensitivity and 87.5% specificity. The methods developed were more sensitive and specific using the mixture of the recombinant proteins fused to GST (core+E2).
    Talanta 06/2013; 110:32-8. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the 1970s, scientists learned of a new pathogen causing non-A, non-B hepatitis. Classical approaches were used to isolate and characterize this new pathogen, but it could be transmitted experimentally only to chimpanzees and progress was slow until the pathogen was identified as hepatitis C virus (HCV) in 1989. Since then, research and treatment of HCV have expanded with the development of modern biological medicine: HCV genome organization and polyprotein processing were delineated in 1993; the first three-dimensional structure of HCV nonstructural protein (NS3 serine protease) was revealed in 1996; an infectious clone of HCV complementary DNA was first constructed in 1997; interferon and ribavirin combination therapy was established in 1998 and the therapeutic strategy gradually optimized; the HCV replicon system was produced in 1999; functional HCV pseudotyped viral particles were described in 2003; and recombinant infectious HCV in tissue culture was produced successfully in 2005. Recently, tremendous advances in HCV receptor discovery, understanding the HCV lifecycle, decryption of the HCV genome and proteins, as well as new anti-HCV compounds have been reported. Because HCV is difficult to isolate and culture, researchers have had to avail themselves to the best of modern biomedical technology; some of the major achievements in HCV research have not only advanced the understanding of HCV but also promoted knowledge of virology and cellular physiology. In this review, we summarize the advancements and remaining scotomas in the molecular virology and epidemiology of HCV.
    World Journal of Gastroenterology 11/2013; 19(44):7910-7921. · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.
    Memórias do Instituto Oswaldo Cruz 09/2014; · 1.36 Impact Factor