Article

Leukocyte telomere shortening in elderly Type2DM patients with previous myocardial infarction.

Dept. of Molecular Pathology and Innovative Therapies, Polytechnic University of Marche, Ancona, Italy.
Atherosclerosis (Impact Factor: 3.71). 05/2009; 206(2):588-93. DOI: 10.1016/j.atherosclerosis.2009.03.034
Source: PubMed

ABSTRACT We performed a cross-sectional study to examine the differences in leukocyte telomere length among three groups of subjects: patients with type 2 diabetes mellitus without history of previous myocardial infarction (Type2DM), patients with type 2 diabetes mellitus with evidence of previous myocardial infarction (Type2DM+MI), and healthy control subjects (CTR). The main objective of the present study is to investigate differences in telomere length between the studied groups of subjects, with the aim to clarify if telomere length could be a reliable marker associated with MI in Type2DM patients. Secondary end point is the identification of associations between leukocyte telomere length and selected variables related to glycemic control, pro-inflammatory status and lipidic profile.
A total of 272 elderly subjects, 103 Type2DM (mean age 70+/-4 years, 59% males), 65 Type2DM+MI (mean age 68+/-7 years, 68% males), and 104 CTR (mean age 69+/-7 years, 50% males) were studied. Telomere length, defined as T/S (Telomere-Single copy gene ratio), was determined in leukocytes by quantitative real-time polymerase chain reaction (real-time PCR)-based assay. Moreover, we assessed: (1) high sensitive C reactive protein (hsCRP), fibrinogen and plasminogen-activator inibitor-1 (PAI-1) as inflammatory markers; (2) fasting glucose, insulin, glycated haemoglobin (HbA1C) and waist-to-hip ratio as markers of glycemic control; (3) total-cholesterol, HDL-cholesterol and triglycerides as markers of lipidic profile, in all sample population. The use of statins and sulfonylurea, as well as the presence of some relevant diabetes complications (nephropathy and retinopathy) were also assessed.
Type2DM+MI elderly patients have leukocyte telomere lengths shorter than those of Type2DM (without MI) and healthy CTR. Moreover, glucose, HbA1C and waist-to-hip ratio, variables related to glycemic control, showed a significant inverse correlation with leukocyte telomeres length.

1 Bookmark
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several epidemiological studies have examined the association between shortened telomere length and type 2 diabetes mellitus (T2DM), while the results remained conflicting. We conducted a meta-analysis to derive a more precise estimation of the relationship between them. We systematically reviewed the databases of PubMed, EMBASE, and Web of Science for all studies on the association between telomere length and T2DM. We conducted this study assessed by STATA 11.0. Data were summarized using random-effects or fixed-effects meta-analysis. The heterogeneity and publication bias among studies were examined by using χ(2)-based Q statistic test and Egger's test, respectively. Nine cohorts consisting of 5759 cases and 6518 controls were selected into the meta-analysis. The results indicated that shortened telomere length was significantly associated with T2DM risk (OR: 1.291; 95% CI: 1.112, 1.498; P<0.001) with heterogeneity (I(2) = 71.6%). When three cohorts responsible for the heterogeneity were excluded, the pooled OR for the remaining cohorts indicated a significant association between shortened telomere length and T2DM (OR: 1.117; 95% CI: 1.002, 1.246; P = 0.045) without heterogeneity. We found a statistically significant association between shortened telomere length and T2DM.
    PLoS ONE 01/2013; 8(11):e79993. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic factors that underlie the increasing incidence of diabetes with age are poorly understood. We examined whether telomere length, which is inherited and known to shorten with age, plays a role in the age-dependent increased incidence of diabetes. We show that in mice with short telomeres, insulin secretion is impaired and leads to glucose intolerance despite the presence of an intact β-cell mass. In ex vivo studies, short telomeres induced cell-autonomous defects in β-cells including reduced mitochondrial membrane hyperpolarization and Ca(2+) influx which limited insulin release. To examine the mechanism, we looked for evidence of apoptosis but found no baseline increase in β-cells with short telomeres. However, there was evidence of all the hallmarks of senescence including slower proliferation of β-cells and accumulation of p16(INK4a). Specifically, we identified gene expression changes in pathways which are essential for Ca(2+)-mediated exocytosis. We also show that telomere length is additive to the damaging effect of endoplasmic reticulum stress which occurs in the late stages of type 2 diabetes. This additive effect manifests as more severe hyperglycemia in Akita mice with short telomeres which had a profound loss of β-cell mass and increased β-cell apoptosis. Our data indicate that short telomeres can affect β-cell metabolism even in the presence of intact β-cell number, thus identifying a novel mechanism of telomere-mediated disease. They implicate telomere length as a determinant of β-cell function and diabetes pathogenesis.
    PLoS ONE 01/2011; 6(3):e17858. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of atherosclerosis, an age-related disorder, may be due to a premature biological ageing. Cellular senescence, the finite replicative lifespan of cells, plays a critical role in the pathogenesis of atherosclerosis. The biological mechanism that triggers the onset of cellular senescence is thought to be telomere shortening. The two major mechanisms responsible for telomere shortening are the end-replication problem, oxidative DNA damage as well as inflammation induced by environmental risk factors. Repair of the endothelium depends on the presence of endothelial progenitor cells which depends on the hematopoietic stem cells (HSC) reserves. In numerous past studies, short LTL has been associated with atherosclerosis. Here we review the literature on telomere biology and coronary artery disease (CAD).
    Nutrition, Metabolism and Cardiovascular Diseases. 01/2014;

Full-text

View
47 Downloads
Available from
May 20, 2014