Article

Litomosoides sigmodontis: A simple method to infect mice with L3 larvae obtained from the pleural space of recently infected jirds (Meriones unguiculatus)

Dept. of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
Experimental Parasitology (Impact Factor: 1.86). 06/2009; 123(1):95-8. DOI: 10.1016/j.exppara.2009.05.009
Source: PubMed

ABSTRACT Litomosoides sigmodontis is a filarial nematode that is used as a mouse model for human filarial infections. The life cycle of L. sigmodontis comprises rodents as definitive hosts and tropical rat mites as alternate hosts. Here, we describe a method of infecting mice with third stage larvae (L3) extracted from the pleural space of recently infected jirds (Meriones unguiculatus). This method enables infection of mice with a known number of L3 larvae without the time-consuming dissection of L3 larvae from mites and results in higher worm recovery and patency rates than conventional methods. Additionally, this method allows for geographical separation of the facility maintaining the L. sigmodontis life cycle from the institution at which mice are infected.

Download full-text

Full-text

Available from: John W Mccall, Jul 28, 2015
0 Followers
 · 
139 Views
  • Source
    • "This infection results in the production of large quantities of parasite-specific IgE beginning at 4 weeks post-infection (Torrero et al., 2010), resulting in sensitization of both mast cells and basophils to parasite antigen (LsAg) through binding of specific IgE to FcER1. L3 stage larvae for infection studies were obtained from the pleural cavity of Mongolian jirds (Meriones unguiculatus, TRS Laboratory Inc., Athens, GA) that had been infected by the bite of infectious mites 4 days earlier as previously described (Hubner et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells are important effector cells of allergy and are involved in the pathology of many other diseases. Measurement of β-hexosaminidase activity, the most commonly used method for evaluation of murine mast cell activity, requires a large number of cells and thus is of limited utility for studying mast cells in mouse models of disease. In this study we evaluated the sensitivity of histamine release as compared to β-hexosaminidase activity in the measurement of mast cell activation. Whereas a minimum of 6×10(4) mast cells per ml were required to detect slight increases in β-hexosaminidase activity after anti-IgE and ionomycin stimulation, substantial increases in histamine release could be detected under the same activating conditions with as few as 480 mast cells per ml. These findings demonstrate that measurement of histamine release is substantially more sensitive than assessment of β-hexosaminidase activity for detecting mast cell activation. Additionally, we describe a novel flow cytometric method for detecting murine mast cell activation. When using 7.5×10(5) peritoneal cells per condition and gating on IgE+c-kit+cells, mast cell expression of surface CD200R1 increased after both IgE and non IgE-mediated activation. This flow cytometric procedure was uncomplicated and rapid, with increases in surface CD200R1 expression appearing after as little as 30 min of stimulation time. Measuring histamine release and surface CD200R1 expression are sensitive approaches for detection of murine mast cell activation. Further, both approaches can be done on unpurified peritoneal cell populations. By requiring low numbers of cells, these approaches are ideal for investigating mast cell activation in murine models of disease.
    Journal of immunological methods 02/2012; 379(1-2):15-22. DOI:10.1016/j.jim.2012.02.014 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal studies have demonstrated that helminth vaccines which induce type 2 immune responses can be protective. To date, however, such vaccines have not been tested against repeated parasite challenges. Since repeated antigenic challenge of patients with allergic disease results in immunologic tolerance, we hypothesized that a helminth vaccine which induces type 2 immune responses may lose its protective efficacy in the setting of repeated parasite exposures (RPEs). To test this hypothesis, we examined whether RPEs induce immunological tolerance and reduce the effectiveness of a type 2 immune-inducing vaccine. BALB/c mice vaccinated against Litomosoides sigmodontis, a filarial nematode of rodents, were repeatedly exposed to irradiated larvae for 2 or 8 weeks or to non-irradiated infectious larvae for three months. Vaccination-induced parasite-specific IgE levels, parasite antigen-driven basophil interleukin 4 (IL-4) release, and Th2 skewing of the cellular immune response remained stable in the face of RPEs. Furthermore, RPEs in vaccinated mice did not augment immunoregulatory responses, as parasite antigen-driven cellular proliferation, production of IL-10, and frequencies of CD4(+)CD25(+)FoxP3(+) regulatory T-cells were not altered by RPEs. Challenge infections with infectious L3-stage larvae resulted in lower worm burdens in vaccinated mice given RPEs than in vaccinated controls. These results demonstrate that vaccines which induce type 2 immune responses can maintain their efficacy in the setting of repeated parasite exposures.
    Vaccine 02/2010; 28(7):1746-57. DOI:10.1016/j.vaccine.2009.12.016 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic helminth infections induce a type 2 immune response characterized by eosinophilia, high levels of IgE, and increased T cell production of type 2 cytokines. Because basophils have been shown to be substantial contributors of IL-4 in helminth infections, and because basophils are capable of inducing Th2 differentiation of CD4(+) T cells and IgE isotype switching in B cells, we hypothesized that basophils function to amplify type 2 immune responses in chronic helminth infection. To test this, we evaluated basophil function using the Litomosoides sigmodontis filaria model of chronic helminth infection in BALB/c mice. Time-course studies showed that eosinophilia, parasite Ag-specific CD4(+) T cell production of IL-4 and IL-5 and basophil activation and IL-4 production in response to parasite Ag all peak late (6-8 wk) in the course of L. sigmodontis infection, after parasite-specific IgE has become detectable. Mixed-gender and single-sex worm implantation experiments demonstrated that the relatively late peak of these responses was not dependent on the appearance of circulating microfilariae, but may be due to initial low levels of parasite Ag load and/or habitation of the developing worms in the pleural space. Depletion of basophils throughout the course of L. sigmodontis infection caused significant decreases in total and parasite-specific IgE, eosinophilia, and parasite Ag-driven CD4(+) T cell proliferation and IL-4 production, but did not alter total worm numbers. These results demonstrate that basophils amplify type 2 immune responses, but do not serve a protective role, in chronic infection of mice with the filarial nematode L. sigmodontis.
    The Journal of Immunology 11/2010; 185(12):7426-34. DOI:10.4049/jimmunol.0903864 · 5.36 Impact Factor
Show more