Validation of human papillomavirus genotyping by signature DNA sequence analysis

Department of Pathology, Milford Hospital, Milford, Connecticut, USA.
BMC Clinical Pathology 02/2009; 9:3. DOI: 10.1186/1472-6890-9-3
Source: PubMed

ABSTRACT Screening with combined cytologic and HPV testing has led to the highest number of excessive colposcopic referrals due to high false positive rates of the current HPV testing in the USA. How best to capitalize on the enhanced sensitivity of HPV DNA testing while minimizing false-positive results from its lower specificity is an important task for the clinical pathologists.
The HPV L1 gene DNA in liquid-based Pap cytology specimens was initially amplified by the degenerate MY09/MY11 PCR primers and then re-amplified by the nested GP5+/GP6+ primers, or the heminested GP6/MY11, heminested GP5/MY09 primers or their modified equivalent without sample purification or DNA extraction. The nested PCR products were used for direct automated DNA sequencing. A 34- to 50-base sequence including the GP5+ priming site was selected as the signature sequence for routine genotyping by online BLAST sequence alignment algorithms.
Of 3,222 specimens, 352 were found to contain HPV DNA, with 92% of the positive samples infected by only 1 of the 35 HPV genotypes detected and 8% by more than 1 HPV genotype. The most common genotype was HPV-16 (68 isolates), followed by HPV-52 (25 isolates). More than half (53.7%) of the total number of HPV isolates relied on a nested PCR for detection although the majority of HPV-16, -18, -31, -33 -35 and -58 isolates were detected by a single MY09/MY11 PCR. Alignment of a 34-base sequence downstream of the GP5+ site failed to distinguish some isolates of HPV-16, -31 and -33. Novel variants of HPV with less than "100% identities" signature sequence match with those stored in the Genbank database were also detected by signature DNA sequencing in this rural and suburban population of the United States.
Laboratory staff must be familiar with the limitations of the consensus PCR primers, the locations of the signature sequence in the L1 gene for some HPV genotypes, and HPV genotype sequence variants in order to perform accurate HPV genotyping.

Download full-text


Available from: Sin Hang Lee, Sep 15, 2014
1 Follower
  • Source
    • "GP6+ primer was used for sequencing as it detects a 34 to 50 bp hyper-variable region upstream to GP5+ primer site. It can be used as a signature sequence for most of the HPV types except for some variants (Lee et al. 2009). Sequence alignment was done by ClustalW and NCBI BLAST algorithm. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In developing countries like India, occurrence of Human papillomavirus (HPV) in cervical cancer as well as in the asymptomatic population was observed to be very high. Studies on HPV prevalence have been conducted in different parts of the country but no data were available from the eastern region of Uttar Pradesh (UP). The present study aimed to determine the status of HPV prevalence and its association with different socio-demographic factors in this population. Prevalence of HPV was investigated in a total of 2424 cervical scrape samples of asymptomatic women. Primer sets from L1 consensus region of viral genome were used to detect the presence of HPV, and the positive samples were genotyped by sequencing. Univariate binary logistic regression analysis was used to evaluate association of socio-demographic factors with HPV. 9.9% of the clinically asymptomatic women were found to be infected with HPV comprising 26 different genotypes. Among HPV-positive women, 80.8% showed single infection, while 15.4% harboured multiple infections. HPV-16 (63.7%) was the most prevalent, followed by HPV-31 (6.7%), HPV-6 (5.4%), HPV-81 (4.6%) and HPV-33 (4.2%). Significant association of HPV with non-vegetarian diet (P less than 0.05) and rural residential areas (P less than 0.01) were observed. High prevalence of HPV-16 in asymptomatic women of this population, a frequency comparable to invasive cervical cancers, highlights an urgent need for a therapeutic HPV vaccine covering HPV-16 and other high-risk types to provide protection against the disease.
    Journal of Biosciences 03/2012; 37(1):63-72. DOI:10.1007/s12038-012-9181-y · 1.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Product evaluation is the key component to ensure user interface quality. It can happen in different phases of the product's lifecycle, with diverse objectives, participants and methods. This paper presents a tool developed in order to overcome the difficulty in dealing with the volume and variety of formats of the evaluation data. The objective is to support the data analysis phase by offering means for data storage and query, making it easier to interpret the findings
    Systems, Man, and Cybernetics, 2001 IEEE International Conference on; 02/2001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent infection indicated by detection of human papillomavirus 16 (HPV-16) on repeat testing over a period of time poses the greatest cervical cancer risk. However, variants of HPV-16, HPV-31 and HPV-33 may share several short sequence homologies in the hypervariable L1 gene commonly targeted for HPV genotyping. The purpose of this study was to introduce a robust laboratory procedure to validate HPV-16 detected in clinical specimens, using the GenBank sequence database as the standard reference for genotyping. A nested PCR with two pairs of consensus primers was used to amplify the HPV DNA released in crude proteinase K digest of the cervicovaginal cells in liquid-based Papanicolaou cytology specimens. The positive nested PCR products were used for direct automated DNA sequencing. A 48-base sequence downstream of the GP5+ priming site, or a 34-base sequence upstream thereof, was needed for unequivocal validation of an HPV-16 isolate. Selection of a 45-base, or shorter, sequence immediately downstream of the GP5+ site for Basic Local Alignment Search Tool sequence analysis invariably led to ambiguous genotyping results. DNA sequence analysis may be used for differential genotyping of HPV-16, HPV-31 and HPV-33 in clinical specimens. However, selection of the signature sequence for Basic Local Alignment Search Tool algorithms is crucial to distinguish certain HPV-16 variants from other closely related HPV genotypes.
    Journal of clinical pathology 10/2009; 63(3):235-9. DOI:10.1136/jcp.2009.069401 · 2.55 Impact Factor
Show more