Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer

Biomaterials (Impact Factor: 8.56). 07/2014; 35(23):6118–6129. DOI: 10.1016/j.biomaterials.2014.04.034


Despite progress, combination therapy of different functional drugs to increase the efficiency of anticancer treatment still remains challenges. An amphiphilic methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-lysine) triblock copolymer decorated with deoxycholate (mPEsG-b-PLG-b-PLL/DOCA) was synthesized and developed as a nanovehicle for the co-delivery of anticancer drugs: doxorubicin (DOX) and paclitaxel (PTX). The amphiphilic copolymer spontaneously self-assembled into micellar-type nanoparticles in aqueous solutions and the blank nanoparticles possessed excellent stability. Three different domains of the copolymer performed distinct functions: PEG outer corona provided prolonged circulation, middle biodegradable and hydrophilic PLG shell was designed for DOX loading through electrostatic interactions, and hydrophobic deoxycholate modified PLL served as the container for PTX. In vitro cytotoxicity assays against A549 human lung adenocarcinoma cell line demonstrated that the DOX + PTX co-delivered nanoparticles (Co-NPs) exhibited synergistic effect in inducing cancer cell apoptosis. Ex vivo DOX fluorescence imaging revealed that Co-NPs had highly efficient targeting and accumulation at the implanted site of A549 xenograft tumor in vivo. Co-NPs exhibited significantly higher antitumor efficiency in reducing tumor size compared to free drug combination or single drug-loaded nanoparticles, while no obvious side effects were observed during the treatment, indicating this co-delivery system with different functional antitumor drugs provides the clinical potential in cancer therapy.

Download full-text


Available from: Shixian Lv, Jul 12, 2014
1 Follower
108 Reads
  • Source
    • "The development of nanotechnology has resulted in an enhanced permeability and retention (EPR) effect for many anti-cancer agents, reducing their nonspecific accumulation in normal tissues and increasing their preferential accumulation in tumors [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]. Such nanotechnology has been extensively used for the delivery of cisplatin [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Platinum-based polymeric nano-drugs, especially cisplatin-loaded polymeric nanoparticles (CDDP-NPs), have been extensively exploited for the treatment of solid tumors. However, it is still unclear what role the processing procedure and the properties of the polymeric carrier materials may play in influencing the plasma pharmacokinetics, biodistribution and in vivo efficacy of CDDP-NPs. In this study, a series of poly(l-glutamic acid)-g-methoxy poly(ethylene glycol) (PLG-g-mPEG) copolymers were synthesized for the preparation of CDDP-loaded PLG-g-mPEG (CDDP/PLG-g-mPEG) nanoparticles. All of the parameters, including PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length, ultrafiltration purification and cisplatin loading content, were found to have a significant influence on the plasma pharmacokinetics of the CDDP/PLG-g-mPEG nanoparticles. The blood circulation time of the nanoparticles was prolonged with increases in PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length and CDDP loading content. The use of ultrafiltration purification could prolong the blood circulation time of the nanoparticles as well. Experiments to measure the pharmacokinetics and biodistribution demonstrated that the selected CDDP/PLG-g-mPEG nanoparticles, NP10, had a long blood circulation time and could achieve selective and significant accumulation in Lewis lung carcinoma (LLC) tumors. The platinum plasma concentrations in the LLC tumor-bearing mice receiving NP10 remained up to 46-fold higher than that of mice receiving equivalent doses of free CDDP. In addition, the plasma area under the concentration time curve (AUC) of NP10 was 31-fold higher than that of free CDDP in 48h. The platinum concentration ratio of NP10 to free CDDP in tumors reached as high as 9.4. The tumor AUC ratio of NP10 to CDDP was 6. Using a mouse C26 tumor model, here we demonstrate that NP10 improves the safety and tolerance in vivo when compared to CDDP and effectively inhibits the growth of C26 tumors. Furthermore, increasing the dosage of NP10 by 2 or 3-fold of free CCDP improved its anticancer efficacy to comparable or higher levels. These results indicate that CDDP/PLG-g-mPEG nanoparticles have greater potential for the treatment of solid tumors in clinical application. Copyright © 2014. Published by Elsevier B.V.
    Journal of Controlled Release 12/2014; 205. DOI:10.1016/j.jconrel.2014.12.022 · 7.71 Impact Factor
  • Source
    • "In our previous research, the synergistic effect of DOX and PTX 83 has been proved against A549, HepG2 and MCF-7 cell lines [18] [33]. 84 Although these drug loaded nanoparticles exhibited favorable 85 physicochemical and biological properties, the surface morphology 86 and aerodynamic properties limited their application in pulmonary 87 inhalation treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: PLGA porous microspheres loaded with doxorubicin (DOX) and paclitaxel (PTX) were developed for in situ treatment of metastatic lung cancer. The synergistic effect of the combined drugs was investigated against B16F10 cells to obtain the optimal prescription for in vivo studies. The combination therapy showed great synergism when DOX was the majority in the combination therapy, while they showed moderate antagonism when PTX is in major. The combination of DOX and PTX at a molar ratio of 5/1 showed the best synergistic therapeutic effect in the free form. However, the drugs exhibited more synergism in the PLGA microspheres at a molar ratio of 2/1, due to the difference in drug release rate. The in vivo study verified the synergism of DOX and PTX at the optimal molar ratio. These results suggested that dual encapsulation of DOX and PTX in porous PLGA microspheres would be a promising technology for long effective lung cancer treatment.
    European Journal of Pharmaceutics and Biopharmaceutics 10/2014; 88(3). DOI:10.1016/j.ejpb.2014.09.012 · 3.38 Impact Factor
  • Source
    • "2.9. In vitro cytotoxicity studies The in vitro cytotoxicities of mPEG-b-P(LL-SA), mPEG-b-P(LL-DTPA), free PTX, P(L-PTX) and P(L-SS-PTX) were investigated on A549, B16F1, HeLa and MCF-7 cells using MTT assay [36] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis of polymer-drug conjugate (PDC) capable of convenient preparation and controlled release of therapeutic agents is still an urgent requirement in drug delivery field. Herein, we develop a novel anti-cancer PDC engineered with side groups of disulfide and ester bonds for on-demand delivery of paclitaxel (PTX) with redox and pH dual sensitive behaviors. A simple polymer, 3,3'-dithiodipropionic acid functionalized poly(ethylene glycol)-b-poly(L-lysine) (mPEG-b-P(LL-DTPA)), was synthesized and PTX was directly conjugated to the carboxyl groups of mPEG-b-P(LL-DTPA) to obtain the disulfide-containing polymer-PTX conjugate (P(L-SS-PTX)). Another structural similar polymer-PTX conjugate without disulfide bonds (P(L-PTX)) was also prepared to verify the function of disulfide linkages. The P(L-SS-PTX) micelles showed rapid drug release under tumor-relevant reductive conditions as designed. Interestingly, the PTX release from P(L-SS-PTX) micelles could also be promoted by the increased acidity (pH≈5). In vitro cytotoxicity study showed that the P(L-SS-PTX) micelles exhibited significantly enhanced cytotoxicity against a variety of tumor cells compared to the non-sensitive P(L-PTX) micelles. The in vivo studies on B16F1 melanoma bearing C57BL/6 mice demonstrated the superior antitumor activity of P(L-SS-PTX) over both free PTX and P(L-PTX). This dual-sensitive prodrug provides a useful strategy for anti-tumor drug delivery.
    Journal of Controlled Release 09/2014; 194. DOI:10.1016/j.jconrel.2014.09.009 · 7.71 Impact Factor
Show more