G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle.

Frontiers in Physiology 05/2014; 5:170. DOI: 10.3389/fphys.2014.00170
Source: PubMed

ABSTRACT Granulocyte-colony stimulating factor (G-CSF) increases recovery of rodent skeletal muscles after injury, and increases muscle function in rodent models of neuromuscular disease. However, the mechanisms by which G-CSF mediates these effects are poorly understood. G-CSF acts by binding to the membrane spanning G-CSFR and activating multiple intracellular signaling pathways. Expression of the G-CSFR within the haematopoietic system is well known, but more recently it has been demonstrated to be expressed in other tissues. However, comprehensive characterization of G-CSFR expression in healthy and diseased skeletal muscle, imperative before implementing G-CSF as a therapeutic agent for skeletal muscle conditions, has been lacking. Here we show that the G-CSFR is expressed in proliferating C2C12 myoblasts, differentiated C2C12 myotubes, human primary skeletal muscle cell cultures and in mouse and human skeletal muscle. In mdx mice, a model of human Duchenne muscular dystrophy (DMD), G-CSF mRNA and protein was down-regulated in limb and diaphragm muscle, but circulating G-CSF ligand levels were elevated. G-CSFR mRNA in the muscles of mdx mice was up-regulated however steady-state levels of the protein were down-regulated. We show that G-CSF does not influence C2C12 myoblast proliferation, differentiation or phosphorylation of Akt, STAT3, and Erk1/2. Media change alone was sufficient to elicit increases in Akt, STAT3, and Erk1/2 phosphorylation in C2C12 muscle cells and suggest previous observations showing a G-CSF increase in phosphoprotein signaling be viewed with caution. These results suggest that the actions of G-CSF may require the interaction with other cytokines and growth factors in vivo, however these data provides preliminary evidence supporting the investigation of G-CSF for the management of muscular dystrophy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptors for granulocyte colony-stimulating factor (G-CSFRs) have been confirmed on the cell surfaces of several non-haematopoietic cell types, including bladder cancer cells. This observation has naturally led to the hypothesis that the expression of G-CSFR on these cells may enhance their growth by G-CSF. In this study, the expression of G-CSFR was determined in both established human bladder cancer cell lines and primary bladder cancers. We studied five different human bladder cancer cell lines (KU-1, KU-7, T-24, NBT-2 and KK) and 26 newly diagnosed bladder tumours. G-CSFR mRNA expressions on cultured cell lines were determined using the reverse transcriptase polymerase chain reaction (RT-PCR) method. Furthermore, the G-CSFR binding experiments on the cultured cell lines were conducted using the Na(125)I-labelled G-CSF ligand-binding assay method. Moreover, the G-CSFR mRNA expressions on primary bladder tumour specimens were assessed using the in situ RT-PCR method. Three out of the five cultured cell lines (KU-1, NBT-2 and KK) exhibited G-CSFR mRNA signals when the RT-PCR method was used. The G-CSFR binding experiments showed an equilibrium dissociation constant (K[d]) of 490 pM for KU-1, 340 pM for NBT-2 and 103 pM for KK cells. With in situ RT-PCR, the tumour cells of 6 out of 26 primary bladder tumour specimens (23.1%) presented positive G-CSFR mRNA signals. Thus, in this study, G-CSFR expression was frequently observed on bladder cancer cells. Therefore, the clinical use of G-CSF for patients with bladder cancer should be selected with great care.
    British Journal of Cancer 02/1997; 75(10):1489-96. · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Granulocyte colony-stimulating factor (G-CSF) is the cytokine critical for directing neutrophilic granulocyte differentiation. Early G-CSF signaling events in myeloid cells involves activation of STATs, proteins that serve the dual function of signal transduction and activation of transcription, especially the activation of Stat3. A dominant-negative mutant construct of Stat3 inhibited G-CSF-mediated neutrophilic differentiation indicating that Stat3 is a essential component for driving the G-CSF-mediated differentiation program in myeloid cells. Three isoforms of Stat3 have been identified, alpha(p92), beta(p83) and gamma(p72) each derived from a single gene. Stat3alpha is the predominant isoform expressed in most cells. Stat3beta is derived from Stat3alpha by alternative RNA splicing. Stat3gamma is derived from Stat3alpha by limited proteolysis. Mapping of Stat3alpha and Stat3beta activation in M1 murine myeloid leukemia cells revealed that their optimal activation required G-CSFR constructs containing both Y704 and Y744. These amino acid residues has previously been demonstrated to be essential for G-CSF-induced differentiation in this cells. Phosphopeptide affinity and phosphopeptide inhibition studies indicate that Stat3alpha and Stat3beta are recruited to the G-CSF receptor complex through their interaction with the receptor at phosphotyrosines Y704 and Y744. Y744 is followed at the +3 position by Cys (C). This sequence YXXC, represents a novel motif implicated in the recruitment and activation of Stat3alpha, Stat3beta and Stat3gamma by the hG-CSFR. Structurally, Stat3alpha, Stat3beta and Stat3gamma differ from each other in their C-terminal transactivation domain. In the beta isoform, the Stat3alpha transactivation domain is replaced by 7 amino acid residues which enable Stat3beta to interact with c-Jun. In the gamma isoform, the Stat3alpha transactivation domain is removed by limited proteolysis creating a dominant negative isoform. In immature human myeloid cells capable of differentiating into neutrophils in response to G-CSF, G-CSF did not activate Stat3alpha; rather. it activated predominantly Stat3beta. These findings combined with recent reports linking Stat3alpha with proliferation and transformation suggest that the beta isoform of Stat3 may be more critical for G-CSF-mediated differentiation. Activation of Stat3gamma occurred predominantly in terminally differentiated neutrophils suggesting that it may be part of a controlled proteolytic mechanism modulating pro-proliferative protein(s) in mature myeloid cells.
    Leukemia and Lymphoma 09/1998; 30(5-6):433-42. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reliable information on causes of death is essential to the development of national and international health policies for prevention and control of disease and injury. Medically certified information is available for less than 30% of the estimated 50.5 million deaths that occur each year worldwide. However, other data sources can be used to develop cause-of-death estimates for populations. To be useful, estimates must be internally consistent, plausible, and reflect epidemiological characteristics suggested by community-level data. The Global Burden of Disease Study (GBD) used various data sources and made corrections for miscoding of important diseases (eg, ischaemic heart disease) to estimate worldwide and regional cause-of-death.patterns in 1990 for 14 age-sex groups in eight regions, for 107 causes. Preliminary estimates were developed with available vital-registration data, sample-registration data for India and China, and small-scale population-study data sources. Registration data were corrected for miscoding, and Lorenz-curve analysis was used to estimate cause-of-death patterns in areas without registration. Preliminary estimates were modified to reflect the epidemiology of selected diseases and injuries. Final estimates were checked to ensure that numbers of deaths in specific age-sex groups did not exceed estimates suggested by independent demographic methods. 98% of all deaths in children younger than 15 years are in the developing world. 83% and 59% of deaths at 15-59 and 70 years, respectively, are in the developing world. The probability of death between birth and 15 years ranges from 22.0% in sub-Saharan Africa to 1.1% in the established market economies. Probabilities of death between 15 and 60 years range from 7.2% for women in established market economies to 39.1% for men in sub-Saharan Africa. The probability of a man or woman dying from a non-communicable disease is higher in sub-Saharan Africa and other developing regions than in established market economies. Worldwide in 1990, communicable, maternal, perinatal, and nutritional disorders accounted for 17.2 million deaths, non-communicable diseases for 28.1 million deaths and injuries for 5.1 million deaths. The leading causes of death in 1990 were ischaemic heart disease (6.3 million deaths), cerebrovascular accidents (4.4 million deaths), lower respiratory infections (4.3 million), diarrhoeal diseases (2.9 million), perinatal disorders (2.4 million), chronic obstructive pulmonary disease (2.2 million), tuberculosis (2.0 million), measles (1.1 million), road-traffic accidents (1.0 million), and lung cancer (0.9 million). Five of the ten leading killers are communicable, perinatal, and nutritional disorders largely affecting children. Non-communicable diseases are, however, already major public health challenges in all regions. Injuries, which account for 10% of global mortality, are often ignored as a major cause of death and may require innovative strategies to reduce their toll. The estimates by cause have wide Cls, but provide a foundation for a more informed debate on public-health priorities.
    The Lancet 06/1997; 349(9061):1269-76. · 39.21 Impact Factor

Full-text (3 Sources)

Available from
Jul 15, 2014