Article

T-Cell and NK-Cell Infiltration into Solid Tumors: A Key Limiting Factor for Efficacious Cancer Immunotherapy.

Cancer Discovery (Impact Factor: 15.93). 05/2014; 4(5):522-6. DOI: 10.1158/2159-8290.CD-13-0985
Source: PubMed

ABSTRACT Cancer immunotherapy has great promise, but is limited by diverse mechanisms used by tumors to prevent sustained antitumor immune responses. Tumors disrupt antigen presentation, T/NK-cell activation, and T/NK-cell homing through soluble and cell-surface mediators, the vasculature, and immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T cells. However, many molecular mechanisms preventing the efficacy of antitumor immunity have been identified and can be disrupted by combination immunotherapy. Here, we examine immunosuppressive mechanisms exploited by tumors and provide insights into the therapies under development to overcome them, focusing on lymphocyte traffic. Cancer Discov; 4(5); 522-6. ©2014 AACR.

1 Bookmark
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: NK cells have well-established functions in immune defense against virus infections and cancer through their cytolytic activity and production of cytokines. In this study, we examined the frequency of NK cells and their influence on T cell responses in mice given variants of lymphocytic choriomeningitis virus that cause acute or persisting infection. We found increased frequencies of circulating NK cells during disseminating infection compared with uninfected or acutely infected mice. Consistent with recent reports, we observed that the depletion of NK cells in mice with disseminated infection increased peak numbers of virus-specific cytokine producing CD8(+) T cells and resulted in the rapid resolution of disseminated infection. Additionally, we show that NK cell depletion sustained T cell responses across time and protected against T cell exhaustion. The positive effects of NK cell depletion on T cell responses only occurred when NK cells were depleted within the first 2 d of infection. We find that the improved CD8(+) T cell response correlated with an enhanced ability of APCs from NK cell-depleted mice to stimulate T cell proliferation, independently of the effects of NK cells on CD4(+) T cells. These results indicate that NK cells play an integral role in limiting the CD8 T cell response and contribute to T cell exhaustion by diminishing APC function during persisting virus infection.
    The Journal of Immunology 12/2012; · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although immune mechanisms can suppress tumour growth, tumours establish potent, overlapping mechanisms that mediate immune evasion. Emerging evidence suggests a link between angiogenesis and the tolerance of tumours to immune mechanisms. Hypoxia, a condition that is known to drive angiogenesis in tumours, results in the release of damage-associated pattern molecules, which can trigger the rejection of tumours by the immune system. Thus, the counter-activation of tolerance mechanisms at the site of tumour hypoxia would be a crucial condition for maintaining the immunological escape of tumours. However, a direct link between tumour hypoxia and tolerance through the recruitment of regulatory cells has not been established. We proposed that tumour hypoxia induces the expression of chemotactic factors that promote tolerance. Here we show that tumour hypoxia promotes the recruitment of regulatory T (T(reg)) cells through induction of expression of the chemokine CC-chemokine ligand 28 (CCL28), which, in turn, promotes tumour tolerance and angiogenesis. Thus, peripheral immune tolerance and angiogenesis programs are closely connected and cooperate to sustain tumour growth.
    Nature 07/2011; 475(7355):226-30. · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Combining tumor antigens with an immunostimulant can induce the immune system to specifically eliminate cancer cells. Generally, this combination is accomplished in an ex vivo, customized manner. In a preclinical lymphoma model, intratumoral injection of a Toll-like receptor 9 (TLR9) agonist induced systemic antitumor immunity and cured large, disseminated tumors. We treated 15 patients with low-grade B-cell lymphoma using low-dose radiotherapy to a single tumor site and-at that same site-injected the C-G enriched, synthetic oligodeoxynucleotide (also referred to as CpG) TLR9 agonist PF-3512676. Clinical responses were assessed at distant, untreated tumor sites. Immune responses were evaluated by measuring T-cell activation after in vitro restimulation with autologous tumor cells. This in situ vaccination maneuver was well-tolerated with only grade 1 to 2 local or systemic reactions and no treatment-limiting adverse events. One patient had a complete clinical response, three others had partial responses, and two patients had stable but continually regressing disease for periods significantly longer than that achieved with prior therapies. Vaccination induced tumor-reactive memory CD8 T cells. Some patients' tumors were able to induce a suppressive, regulatory phenotype in autologous T cells in vitro; these patients tended to have a shorter time to disease progression. One clinically responding patient received a second course of vaccination after relapse resulting in a second, more rapid clinical response. In situ tumor vaccination with a TLR9 agonist induces systemic antilymphoma clinical responses. This maneuver is clinically feasible and does not require the production of a customized vaccine product.
    Journal of Clinical Oncology 10/2010; 28(28):4324-32. · 17.88 Impact Factor