Article

Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects.

Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
PLoS Genetics (Impact Factor: 8.17). 11/2013; 9(11):e1003926. DOI: 10.1371/journal.pgen.1003926
Source: PubMed

ABSTRACT The major histocompatibility complex (MHC) region is strongly associated with multiple sclerosis (MS) susceptibility. HLA-DRB1*15:01 has the strongest effect, and several other alleles have been reported at different levels of validation. Using SNP data from genome-wide studies, we imputed and tested classical alleles and amino acid polymorphisms in 8 classical human leukocyte antigen (HLA) genes in 5,091 cases and 9,595 controls. We identified 11 statistically independent effects overall: 6 HLA-DRB1 and one DPB1 alleles in class II, one HLA-A and two B alleles in class I, and one signal in a region spanning from MICB to LST1. This genomic segment does not contain any HLA class I or II genes and provides robust evidence for the involvement of a non-HLA risk allele within the MHC. Interestingly, this region contains the TNF gene, the cognate ligand of the well-validated TNFRSF1A MS susceptibility gene. The classical HLA effects can be explained to some extent by polymorphic amino acid positions in the peptide-binding grooves. This study dissects the independent effects in the MHC, a critical region for MS susceptibility that harbors multiple risk alleles.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 narcolepsy, a disorder caused by a lack of hypocretin (orexin), is so strongly associated with human leukocyte antigen (HLA) class II HLA-DQA1(∗)01:02-DQB1(∗)06:02 (DQ0602) that very few non-DQ0602 cases have been reported. A known triggering factor for narcolepsy is pandemic 2009 influenza H1N1, suggesting autoimmunity triggered by upper-airway infections. Additional effects of other HLA-DQ alleles have been reported consistently across multiple ethnic groups. Using over 3,000 case and 10,000 control individuals of European and Chinese background, we examined the effects of other HLA loci. After careful matching of HLA-DR and HLA-DQ in case and control individuals, we found strong protective effects of HLA-DPA1(∗)01:03-DPB1(∗)04:02 (DP0402; odds ratio [OR] = 0.51 [0.38-0.67], p = 1.01 × 10(-6)) and HLA-DPA1(∗)01:03-DPB1(∗)04:01 (DP0401; OR = 0.61 [0.47-0.80], p = 2.07 × 10(-4)) and predisposing effects of HLA-DPB1(∗)05:01 in Asians (OR = 1.76 [1.34-2.31], p = 4.71 × 10(-05)). Similar effects were found by conditional analysis controlling for HLA-DR and HLA-DQ with DP0402 (OR = 0.45 [0.38-0.55] p = 8.99 × 10(-17)) and DP0501 (OR = 1.38 [1.18-1.61], p = 7.11 × 10(-5)). HLA-class-II-independent associations with HLA-A(∗)11:01 (OR = 1.32 [1.13-1.54], p = 4.92 × 10(-4)), HLA-B(∗)35:03 (OR = 1.96 [1.41-2.70], p = 5.14 × 10(-5)), and HLA-B(∗)51:01 (OR = 1.49 [1.25-1.78], p = 1.09 × 10(-5)) were also seen across ethnic groups in the HLA class I region. These effects might reflect modulation of autoimmunity or indirect effects of HLA class I and HLA-DP alleles on response to viral infections such as that of influenza. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 01/2015; 96(1):136-146. DOI:10.1016/j.ajhg.2014.12.010 · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TSPO is a neuroinflammatory biomarker and emerging therapeutic target in psychiatric disorders. We evaluated whether TSPO polymorphisms contribute to interindividual variability in schizophrenia, antipsychotic efficacy and antipsychotic-induced weight gain. We analyzed TSPO polymorphisms in 670 schizophrenia cases and 775 healthy controls. Gene-gene interactions between TSPO and other mitochondrial membrane protein-encoding genes (VDAC1 and ANT1) were explored. Positive findings were evaluated in two independent samples (Munich, n = 300; RUPP, n = 119). TSPO rs6971 was independently associated with antipsychotic-induced weight gain in the discovery (puncor = 0.04) and RUPP samples (p = 3.00 × 10(-3)), and interacted with ANT1 rs10024068 in the discovery (p = 1.15 × 10(-3)) and RUPP samples (p = 2.76 × 10(-4)). Our findings highlight TSPO as a candidate for future investigations of antipsychotic-induced weight gain, and support the involvement of mitochondrial membrane components in this serious treatment side effect. Original submitted 20 August 2014; Revision submitted 3 November 2014.
    Pharmacogenomics 01/2015; 16(1):5-22. DOI:10.2217/pgs.14.158 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The central nervous system (CNS), once viewed as an immune-privileged site protected by the blood-brain barrier (BBB), is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inflammatory mediators that regulate BBB permeability and recruit additional circulating immune cells. Here, we discuss the various roles played by astrocytes, microglia, and infiltrating immune cells during host immunity to non-tumor antigens in the CNS, focusing first on bacterial and viral infections, and then turning to responses directed against self-antigens in the setting of CNS autoimmunity.
    Frontiers in Oncology 11/2014; 4:328. DOI:10.3389/fonc.2014.00328

Full-text

Download
15 Downloads
Available from
Oct 29, 2014