Intrauterine growth restriction: screening, diagnosis, and management.

ABSTRACT Background: Intrauterine growth restriction (IUGR) is an obstetrical complication, which by definition would screen in 10% of fetuses in the general population. The challenge is to identify the subset of pregnancies affected with pathological growth restriction in order to allow intervention that would decrease morbidity and mortality. Objective: The purpose of this guideline is to provide summary statements and recommendations and to establish a framework for screening, diagnosis, and management of pregnancies affected with IUGR. Methods: Affected pregnancies are compared with pregnancies in which the fetus is at an appropriate weight for its gestational age. History, physical examination, and laboratory investigations including biochemical markers and ultrasound characteristics of IUGR are reviewed, and a management strategy is suggested. Evidence: Published literature in English was retrieved through searches of PubMed or MEDLINE, CINAHL, and The Cochrane Library in January 2013 using appropriate controlled vocabulary via MeSH terms (fetal growth restriction and small for gestational age) and key words (fetal growth, restriction, growth retardation, IUGR, low birth weight, small for gestational age). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. Values: The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table). Benefits, harms, and costs: Implementation of the recommendations in this guideline should increase clinician recognition of IUGR and guide intervention where appropriate. Optimal long-term follow-up of neonates diagnosed as IUGR may improve their long-term health. Summary Statements 1. The definition of small-for-gestational age for a fetus in utero is an estimated fetal weight that measures < 10th percentile on ultrasound. This diagnosis does not necessarily imply pathologic growth abnormalities, and may simply describe a fetus at the lower end of the normal range. (III) 2. Intrauterine growth restriction refers to a fetus with an estimated fetal weight < 10th percentile on ultrasound that, because of a pathologic process, has not attained its biologically determined growth potential. (III) A clinical estimation of fetal weight or symphysis-fundal height has poor sensitivity and specificity and should not be relied upon to diagnose intrauterine growth restriction. Intrauterine growth restriction should be considered in the differential diagnosis when the fetus is found to be small for gestational age. (II-1) 3. Effective screening for intrauterine growth restriction requires accurate dating and includes a review of the mother's menstrual history, relevant assisted reproductive technology information, and either a first trimester or early second trimester dating ultrasound. (I) 4. Symphysis-fundal height determination is of limited value in routine obstetrical care, but continues to be the only physical examination screening test available. (I) 5. Fetal weight determination in fetuses between the 10th and 90th percentiles by ultrasound biometry alone has at least a 10% error rate across gestation, but is effective equally when measuring with abdominal circumference alone or in combination with head size (biparietal diameter or head circumference) and/or femur length to establish an estimated fetal weight. (II-2) 6. Determining whether intrauterine growth restriction is symmetric or asymmetric is of less clinical importance than careful re-evaluation of fetal anatomy and uterine and umbilical artery Doppler studies. (I) 7. In women with risk factors for intrauterine growth restriction, uterine artery Doppler screening at 19 to 23 weeks may identify pregnancies at risk of antepartum stillbirth and preterm delivery due to intrauterine growth restriction and placental disease. (II-2) 8. In pregnancies in which intrauterine growth restriction due to uteroplacental vascular insufficiency is diagnosed, maternal surveillance for the development of severe preeclampsia with adverse features is warranted. (II-1) 9. Once surveillance of a fetus with intrauterine growth restriction is instituted, umbilical artery Doppler studies and biophysical profile scoring can be used as short-term predictors of fetal well-being. (I) 10. In the presence of abnormal umbilical artery Doppler studies, further investigation of the fetal circulatory system by Doppler examination of the middle cerebral artery, ductus venosus, and umbilical vein can be considered. (II-2) 11. For a fetus with intrauterine growth restriction, the decision for obstetrical intervention, including Caesarean section, in cases of abnormal fetal heart rate or malpresentation is largely based on fetal viability, as assessed by ultrasound. (II-2) 12. Maternal surveillance for the development of preeclampsia is warranted. (II-2) Recommendations 1. Women should be screened for clinical risk factors for intrauterine growth restriction by means of a complete history. (II-2B) 2. Women should be counselled on smoking cessation at any time during pregnancy. (II-2A) 3. First and second trimester screening tests for aneuploidy maybe useful tests of placental function. If two screening test results are abnormal, health care providers should be aware that the fetus is at increased risk of preterm intrauterine growth restriction and associated stillbirth. (II-1A) 4. If intrauterine growth restriction is suspected, further assessment can assist in making the diagnosis. If available, detailed ultrasound examination of the placenta (looking for evidence of a small, thickened placenta, or abnormal morphology) and uterine artery Dopplers should be considered at 19 to 23 weeks. In the absence of available diagnostic testing, closer surveillance should be offered. A maternal-fetal medicine consultation can be considered if the placenta appears abnormal on ultrasound, especially in the context of a growth-restricted fetus and abnormal uterine artery Doppler. In a rural setting, the caregiver needs to decide whether the patient should be delivered immediately, or whether transfer to a tertiary centre is appropriate. A telephone consultation and telemedicine may help. (II-2A) 5. In women without risk factors for intrauterine growth restriction, comprehensive third trimester ultrasound examination including biophysical profile, fetal biometry, amniotic fluid volume, and umbilical artery Doppler studies is not recommended. (II-2D) 6. Low-dose aspirin should be recommended to women with a previous history of placental insufficiency syndromes including intrauterine growth restriction and preeclampsia. It should be initiated between 12 and 16 weeks' gestation and continued until 36 weeks. (I-A) 7. Low-dose aspirin should also be recommended to women with two or more current risk factors in pregnancy including, but not limited to, pre-gestational hypertension, obesity, maternal age > 40 years, history of use of artificial reproductive technology, pre-gestational diabetes mellitus (type I or II), multiple gestation, previous history of placental abruption, and previous history of placental infarction. It should be initiated between 12 and 16 weeks' gestation and continued until 36 weeks. (I-A) 8. Umbilical artery Doppler studies are not recommended as a routine screening test in uncomplicated pregnancies. (I-E) 9. An ultrasound examination for estimated fetal weight and amniotic fluid volume should be considered after 26 weeks if the symphysis-fundal height measurement in centimetres deviates by 3 or more from the gestational age in weeks or there is a plateau in symphysis-fundal height. (II-2B) 10. In cases in which the fetus measures < 10th percentile by estimated fetal weight or abdominal circumference measurement, the underlying cause of intrauterine growth restriction may be established by an enhanced ultrasound examination to include a detailed review of fetal anatomy, placental morphology, and Doppler studies of the uterine and umbilical arteries. (II-2A) 11. In cases of intrauterine growth restriction, determination of amniotic fluid volume should be performed to aid in the differential diagnosis of intrauterine growth restriction and increase the accuracy of the diagnosis of placental insufficiency. (II-2B) 12. Umbilical artery Doppler should be performed in all fetuses with an estimated fetal weight or an abdominal circumference < 10th percentile. (I-A) 13. In pregnancies affected by intrauterine growth restriction, umbilical artery Doppler studies after 24 weeks may prompt intervention that reduces perinatal mortality and severe perinatal morbidity due to intrauterine growth restriction. (I-A) 14. In pregnancies in which intrauterine growth restriction has been identified, invasive testing to rule out aneuploidy may be offered where fetal abnormalities are suspected, soft markers are seen, or no supportive evidence of underlying placental insufficiency is evident. (II-2A) 15. In patients presenting with intrauterine growth restriction, maternal screening for infectious etiology may be considered. (II-2A) 16. When intrauterine growth restriction is diagnosed, surveillance should be initiated. Serial ultrasound estimation of fetal weight (every 2 weeks), along with umbilical artery Doppler studies should be initiated. If available, a placental assessment and other Doppler studies such as middle cerebral artery, umbilical vein, and ductus venosis can be performed. Increased frequency of surveillance may be required. (II-2A) 17. (ABSTRACT TRUNCATED)

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypospadias is one of the most common congenital malformations of the genitourinary tract in males. It is an incomplete fusion of urethral folds early in fetal development and may be associated with other malformations of the genital tract. The etiology is poorly understood and may be hormonal, genetic, or environmental, but most often is idiopathic or multifactorial. Among many possible risk factors identified, of particular importance is low birth weight, which is defined in various ways in the literature. No mechanism has been identified for the association of low birth weight and hypospadias, but some authors propose placental insufficiency as a common inciting factor. Currently, there is no standardized approach for evaluating children with hypospadias in the setting of intrauterine growth restriction. We reviewed the available published literature on the association of hypospadias and growth restriction to determine whether it should be considered a separate entity within the category of disorders of sexual differentiation.
    International Journal of Pediatric Endocrinology 10/2014; 2014(1):20. DOI:10.1186/1687-9856-2014-20


Available from
Jul 17, 2014