Article

Comprehensive molecular characterization of clear cell renal cell carcinoma.

1] Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2] Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.
Nature (Impact Factor: 42.35). 06/2013; DOI: 10.1038/nature12222
Source: PubMed

ABSTRACT Genetic changes underlying clear cell renal cell carcinoma (ccRCC) include alterations in genes controlling cellular oxygen sensing (for example, VHL) and the maintenance of chromatin states (for example, PBRM1). We surveyed more than 400 tumours using different genomic platforms and identified 19 significantly mutated genes. The PI(3)K/AKT pathway was recurrently mutated, suggesting this pathway as a potential therapeutic target. Widespread DNA hypomethylation was associated with mutation of the H3K36 methyltransferase SETD2, and integrative analysis suggested that mutations involving the SWI/SNF chromatin remodelling complex (PBRM1, ARID1A, SMARCA4) could have far-reaching effects on other pathways. Aggressive cancers demonstrated evidence of a metabolic shift, involving downregulation of genes involved in the TCA cycle, decreased AMPK and PTEN protein levels, upregulation of the pentose phosphate pathway and the glutamine transporter genes, increased acetyl-CoA carboxylase protein, and altered promoter methylation of miR-21 (also known as MIR21) and GRB10. Remodelling cellular metabolism thus constitutes a recurrent pattern in ccRCC that correlates with tumour stage and severity and offers new views on the opportunities for disease treatment.

2 Bookmarks
 · 
165 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The etiologic heterogeneity of cancer has traditionally been investigated by comparing risk factor frequencies within candidate sub-types, defined for example by histology or by distinct tumor markers of interest. Increasingly tumors are being profiled for molecular features much more extensively. This greatly expands the opportunities for defining distinct sub-types. In this article we describe an exploratory analysis of the etiologic heterogeneity of clear cell kidney cancer. Data are available on the primary known risk factors for kidney cancer, while the tumors are characterized on a genome-wide basis using expression, methylation, copy number and mutational profiles. We use a novel clustering strategy to identify sub-types. This is accomplished independently for the expression, methylation and copy number profiles. The goals are to identify tumor sub-types that are etiologically distinct, to identify the risk factors that define specific sub-types, and to endeavor to characterize the key genes that appear to represent the principal features of the distinct sub-types. The analysis reveals strong evidence that gender represents an important factor that distinguishes disease sub-types. The sub-types defined using expression data and methylation data demonstrate considerable congruence and are also clearly correlated with mutations in important cancer genes. These sub-types are also strongly correlated with survival. The complexity of the data presents many analytical challenges including, prominently, the risk of false discovery. Genomic profiling of tumors offers the opportunity to identify etiologically distinct sub-types, paving the way for a more refined understanding of cancer etiology.
    BMC Medical Research Methodology 12/2014; 14(1):138. DOI:10.1186/1471-2288-14-138 · 2.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite being a fundamental biological problem the control of body size and proportions during development remains poorly understood, although it is accepted that the insulin-like growth factor (IGF) pathway has a central role in growth regulation, probably in all animals. The involvement of imprinted genes has also attracted much attention, not least because two of the earliest discovered were shown to be oppositely imprinted and antagonistic in their regulation of growth. The Igf2 gene encodes a paternally expressed ligand that promotes growth, while maternally expressed Igf2r encodes a cell surface receptor that restricts growth by sequestering Igf2 and targeting it for lysosomal degradation. There are now over 150 imprinted genes known in mammals, but no other clear examples of antagonistic gene pairs have been identified. The delta-like 1 gene (Dlk1) encodes a putative ligand that promotes fetal growth and in adults restricts adipose deposition. Conversely, Grb10 encodes an intracellular signalling adaptor protein that, when expressed from the maternal allele, acts to restrict fetal growth and is permissive for adipose deposition in adulthood. Here, using knockout mice, we present genetic and physiological evidence that these two factors exert their opposite effects on growth and physiology through a common signalling pathway. The major effects are on body size (particularly growth during early life), lean:adipose proportions, glucose regulated metabolism and lipid storage in the liver. A biochemical pathway linking the two cell signalling factors remains to be defined. We propose that Dlk1 and Grb10 define a mammalian growth axis that is separate from the IGF pathway, yet also features an antagonistic imprinted gene pair.
    BMC Biology 12/2014; 12(1):771. DOI:10.1186/s12915-014-0099-8 · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ror2 is a Wnt ligand receptor that is overexpressed in a variety of tumors including clear cell renal cell carcinoma (ccRCC). Here we demonstrate that expression of wild type Ror2 results in increased tumorigenic properties in in vitro cell culture and in vivo xenograft models. In addition, Ror2 expression produced positive changes in both cell migration and invasion, which were dependent on matrix metalloprotease 2 (MMP2) activity. Mutations in key regions of the kinase domain of Ror2 resulted in the abrogation of increased tumor growth, cell migration, and cell invasion observed with expression of wild-type Ror2. Finally, we examined Ror2 expression as a prognostic biomarker for ccRCC utilizing the TCGA ccRCC dataset. High expression of Ror2 showed a significant correlation with higher clinical stage, nuclear grade, and tumor stage. Furthermore, high expression of Ror2 in ccRCC patients correlated with significant lower overall survival, cancer specific survival, and recurrence free survival. Together, these findings suggest that Ror2 plays a central role in influencing the ccRCC phenotype, and can be considered as a negative prognostic biomarker and potential therapeutic target in this cancer.
    PLoS ONE 12/2014; 9(12):e116101. DOI:10.1371/journal.pone.0116101 · 3.53 Impact Factor

Full-text (2 Sources)

Download
78 Downloads
Available from
Jul 3, 2014