Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery

Infectious Diseases Division, Department of Medicine.
The Journal of Infectious Diseases (Impact Factor: 5.78). 07/2013; 208(5). DOI: 10.1093/infdis/jit236
Source: PubMed

ABSTRACT Background. DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed.Methods. HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX®-B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1-uninfected adults 18-50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools.Results. Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4(+) or CD8(+) T-cell response after the second vaccination, and 88.9% developed a CD4(+) or CD8(+) T-cell response after the third vaccination.Conclusions. Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite an intensive vaccine program influenza infections remain a major health problem, due to the viruses' ability to change its envelope glycoprotein hemagglutinin (HA), through shift and drift, permitting influenza to escape protection induced by current vaccines or natural immunity. Recently a new variant, H7N9, has emerged in China causing global concern. First, there have been more than 130 laboratory-confirmed human infections resulting in an alarmingly high death rate (32.3%). Second, genetic changes found in H7N9 appear to be associated with enabling avian influenza viruses to spread more effectively in mammals, thus transmitting infections on a larger scale. Currently, no vaccines or drugs are effectively able to target H7N9. Here, we report the rapid development of a synthetic consensus DNA vaccine (pH7HA) to elicit potent protective immunity against the H7N9 viruses. We show that pH7HA induces broad antibody responses that bind to divergent HAs from multiple new members of the H7N9 family. These antibody responses result in high-titer HAI against H7N9. Simultaneously, this vaccine induces potent polyfunctional effector CD4 and CD8T cell memory responses. Animals vaccinated with pH7HA are completely protected from H7N9 virus infection and any morbidity associated with lethal challenge. This study establishes that this synthetic consensus DNA vaccine represents a new tool for targeting emerging infection, and more importantly, its design, testing and development into seed stock for vaccine production in a few days in the pandemic setting has significant implications for the rapid deployment of vaccines protecting against emerging infectious diseases.
    Vaccine 03/2014; 32(24). DOI:10.1016/j.vaccine.2014.02.038 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (Mid-IR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coli cultures. Good partial least squares (PLS) regression models were built, either based on mid-IR or NIR spectral data, yielding high coefficients of determination (R(2)) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on mid-IR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput mid-IR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the mid-IR setup. However, mid-IR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multifiber optic probes for multi-bioreactors. In this case, mid-IR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.
    Applied Spectroscopy 05/2015; 69(6). DOI:10.1366/14-07588 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammaglobin-A (MAM-A) is overexpressed in 40% to 80% of primary breast cancers. We initiated a phase I clinical trial of a MAM-A DNA vaccine to evaluate its safety and biologic efficacy. Patients with breast cancer with stable metastatic disease were eligible for enrollment. Safety was monitored with clinical and laboratory assessments. The CD8 T-cell response was measured by ELISPOT, flow cytometry, and cytotoxicity assays. Progression-free survival (PFS) was described using the Kaplan-Meier product limit estimator. Fourteen subjects have been treated with the MAM-A DNA vaccine and no significant adverse events have been observed. Eight of 14 subjects were HLA-A2(+), and the CD8 T-cell response to vaccination was studied in detail. Flow cytometry demonstrated a significant increase in the frequency of MAM-A-specific CD8 T cells after vaccination (0.9% ± 0.5% vs. 3.8% ± 1.2%; P < 0.001), and ELISPOT analysis demonstrated an increase in the number of MAM-A-specific IFNγ-secreting T cells (41 ± 32 vs. 215 ± 67 spm; P < 0.001). Although this study was not powered to evaluate progression-free survival (PFS), preliminary evidence suggests that subjects treated with the MAM-A DNA vaccine had improved PFS compared with subjects who met all eligibility criteria, were enrolled in the trial, but were not vaccinated because of HLA phenotype. The MAM-A DNA vaccine is safe, capable of eliciting MAM-A-specific CD8 T-cell responses, and preliminary evidence suggests improved PFS. Additional studies are required to define the potential of the MAM-A DNA vaccine for breast cancer prevention and/or therapy. Clin Cancer Res; 20(23); 5964-75. ©2014 AACR. ©2014 American Association for Cancer Research.
    Clinical Cancer Research 12/2014; 20(23):5964-75. DOI:10.1158/1078-0432.CCR-14-0059 · 8.19 Impact Factor