Article

Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review.

Pakistan Journal of Biological Sciences 01/2014; 17(2):151-66. DOI: 10.3923/pjbs.2014.151.166
Source: PubMed

ABSTRACT Diagnosis is an important part in case of animal husbandry as treatment of a disease depends on it. Advancement in molecular biology has generated various sophisticated tools like Polymerase Chain Reaction (PCR), its versions along with pen-side diagnostic techniques. Every diagnostic test however has both advantages and disadvantages; PCR is not an exception to this statement. To ease the odds faced by PCR several non-PCR techniques which can amplify DNA at a constant temperature has become the need of hour, thus generating a variety of isothermal amplification techniques including Nucleic Acid Sequence-Based Amplification (NASBA) along with Self-Sustained Sequence Replication (3SR) and Strand Displacement Amplification (SDA) and Loop mediated isothermal amplification (LAMP) test. LAMP stands out to be a good and effective diagnostic test for empowering in developing countries as it does not require sophisticated equipments and skilled personnel and proves to be cost-effective. Performance of LAMP mainly relies on crafting of six primers (including 2 loop primers) ultimately accelerating the reaction. LAMP amplifies DNA in the process pyrophosphates are formed causing turbidity that facilitates visualisation in a more effective way than PCR. The Bst and Bsm polymerase are the required enzymes for LAMP that does not possess 5'-3' exonuclease activity. Results can be visualized by adding DNA binding dye, SYBR green. LAMP is more stable than PCR and real-time PCR. Non-involvement of template DNA preparation and ability to generate 10(9) copies of DNA are added benefits that make it more effective than NASBA or 3SR and SDA. Thus, it fetches researcher's interest in developing various versions of LAMP viz., its combination with lateral flow assay or micro LAMP and more recently lyophilized and electric (e) LAMP. Availability of ready to use LAMP kits has helped diagnosis of almost all pathogens. LAMP associated technologies however needs to be developed as a part of LAMP platform rather than developing them as separate entities. This review deals with all these salient features of this newly developed tool that has enlightened the world of diagnosis.

3 Bookmarks
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spallanzani’s thought of artificial insemination (AI) has revolutionized the animal husbandry field, both in developing and developed countries, by improving the genetic potential of livestock and poultry; minimizing the managemental costs; and holding the service of genetically superior males even after their death. AI in domesticated birds especially in turkey shows promising results unlike other domestic and wild animals. The advantages of AI are many which support the wide adaptation of this technique in the poultry industry to augment its growth. Making AI as an integral part of captive breeding programme for non-domesticated birds would facilitate the process of saving various endangered species of wild birds. However, there are various problems involved in case of birds which need to be addressed before implementing AI. Apart from these, AI also poses a risk of possible transmission of various infectious pathogens / diseases of poultry through semen or its contamination or during the process of insemination. Hence, careful and regular screening and monitoring of poultry will help to check the spread of such diseases. Novel methods are adopted to prevent the colonization of contaminant microbes in stored semen thereby minimizing the pathogen transfer. The recent advances in biotechnology and molecular biology need to be explored fully for early and rapid diagnosis of poultry diseases. This would help in formulating appropriate disease prevention and control strategies, and thus safeguard poultry health and production. This review describes the salient facts about AI practices in poultry and possible transmission of infectious pathogens during insemination along with suitable prevention and control strategies to be adapted.
    Asian Journal of Animal and Veterinary Advances 04/2014; 9(4):211-228. · 0.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Irrespective of aetiology, infectious respiratory diseases of sheep and goats contribute to 5.6 percent of the total diseases of small ruminants. These infectious respiratory disorders are divided into two groups: the diseases of upper respiratory tract, namely, nasal myiasis and enzootic nasal tumors, and diseases of lower respiratory tract, namely, peste des petits ruminants (PPR), parainfluenza, Pasteurellosis, Ovine progressive pneumonia, mycoplasmosis, caprine arthritis encephalitis virus, caseous lymphadenitis, verminous pneumonia, and many others. Depending upon aetiology, many of them are acute and fatal in nature. Early, rapid, and specific diagnosis of such diseases holds great importance to reduce the losses. The advanced enzyme-linked immunosorbent assays (ELISAs) for the detection of antigen as well as antibodies directly from the samples and molecular diagnostic assays along with microsatellites comprehensively assist in diagnosis as well as treatment and epidemiological studies. The present review discusses the advancements made in the diagnosis of common infectious respiratory diseases of sheep and goats. It would update the knowledge and help in adapting and implementing appropriate, timely, and confirmatory diagnostic procedures. Moreover, it would assist in designing appropriate prevention protocols and devising suitable control strategies to overcome respiratory diseases and alleviate the economic losses.
    Veterinary Medicine International. 06/2014; Volume 2014 Special Issue(Article ID 508304):16 pages.
  • Source
    MethodsX. 10/2014; 1:137-143.

Full-text

Download
50 Downloads
Available from
Jun 4, 2014