Rapid Spread and Diversification of Respiratory Syncytial Virus Genotype ON1, Kenya

Emerging Infectious Diseases (Impact Factor: 6.75). 05/2014; 20(6). DOI: 10.3201/eid2006.131438
Source: PubMed


Respiratory syncytial virus genotype ON1, which is characterized by a 72-nt duplication in the attachment protein gene, has been detected in >10 countries since first identified in Ontario, Canada, in 2010. We describe 2 waves of genotype ON1 infections among children admitted to a rural hospital in Kenya during 2012. Phylogenetic analysis of attachment protein gene sequences showed multiple introductions of genotype ON1; variants distinct from the original Canadian viruses predominated in both infection waves. The genotype ON1 dominated over the other group A genotypes during the second wave, and some first wave ON1 variants reappeared in the second wave. An analysis of global genotype ON1 sequences determined that this genotype has become considerably diversified and has acquired signature coding mutations within immunogenic regions, and its most recent common ancestor dates to ≈2008–2009. Surveillance of genotype ON1 contributes to an understanding of the mechanisms of rapid emergence of respiratory viruses.

Download full-text


Available from: Patricia Cane, Jun 10, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Respiratory syncytial virus (RSV) can cause severe respiratory disease in adult hematopoietic cell transplant (HCT) recipients. RSV subgroups A and B have evolved into multiple genotypes. We report on a recently described RSV genotype (ON1) in a cohort of adult HCT recipients in Texas. Methods: Twenty adult HCT recipients were enrolled as a part of an efficacy trial of ribavirin therapy. RSV identification and genotyping was performed using molecular techniques. RSV-specific neutralizing antibody (NAb) responses were measured. Results: ON1 genotype was detected in 3 of 6 patients in the 2011-2012 season and in 8 of 14 patients in 2012-2013 season. Other genotypes detected were NA1 and BA. NAb levels were low at enrollment. Eight of 9 patients who cleared the RSV infection within 2 weeks mounted a ≥4-fold NAb response, compared with 2 of 8 who shed the virus for >2 weeks. The clinical course of those infected with ON1 was comparable to the course for individuals infected with other genotypes. Conclusion: This is the first report of RSV ON1 genotype in the United States, and ON1 genotype was dominant genotype in adult HCT recipients. Interestingly, faster viral clearance was associated with a ≥4-fold NAb response, likely indicating a reconstituted immune system.
    The Journal of Infectious Diseases 08/2014; 211(4). DOI:10.1093/infdis/jiu473 · 6.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in infants and children under five years of age. The novel genotype ON1 has a 72-nucleotide duplication, which is the largest duplicated genome portion of RSV. Whether the ON1 genotype will follow the pattern of the BA genotype, which has a 60-nucleotide duplication, and become the predominant RSV-A strain is a global concern. To obtain information regarding the prevalence of the ON1 genotype in Chongqing in Southwestern China, we examined the circulation pattern of RSV-A identified over four consecutive years (June 2009 to August 2013). In this study, 312 (12%) RSV-A strains were isolated from 2601 nasopharyngeal aspirates, and partial G gene was sequenced successfully in 250 isolates. Of the sequenced Chongqing RSV-A isolates, 237 (94.8%) strains were the NA1 genotype, 4 (1.6%) strains were the NA3 genotype, 4 (1.6%) strains were the NA4 genotype, 1 (0.4%) strain was the GA1 genotype, and 4 (1.6%) strains were identified as the ON1 genotype. Analysis of the distribution, phylogeny, and evolution of the ON1 strains that were collected globally until December 2013 revealed that the ON1 genotype has rapidly disseminated across the world under positive selection pressures. Future studies will determine whether this new genotype will continue to spread and become the dominant strain of RSV-A worldwide. These findings may contribute to the understanding of RSV evolution and to the potential development of a vaccine against RSV.
    Infection Genetics and Evolution 10/2014; 27. DOI:10.1016/j.meegid.2014.07.030 · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We conducted a comprehensive genetic analysis of the C-terminal 3rd hypervariable region of the attachment glycoprotein (G) gene in human respiratory syncytial virus subgroup A (HRSV-A) genotype ON1 (93 strains) and ancestor NA1 (125 strains). Genotype ON1 contains a unique mutation of a 72 nucleotide tandem repeat insertion (corresponding to 24 amino acids) in the hypervariable region. The Bayesian Markov chain Monte Carlo (MCMC) method was used to conduct phylogenetic analysis and a time scale for evolution. We also calculated pairwise distances (p-distances) and estimated the selective pressure. Phylogenetic analysis showed that the analyzed ON1 and NA1 strains formed 4 lineages. A strain belonging to lineage 4 of ON1 showed wide genetic divergence (p-distance, 0.072), which suggests that it might be a candidate new genotype, namely ON2. The emergence of genotype NA1 was estimated to have occurred in 2000 (95% of highest probability density, HPD; 1997–2002) and that of genotype ON1 in 2005 (95% HPD; 2000–2010) based on the time-scaled phylogenetic tree. The evolutionary rate of genotype ON1 was higher than that of ancestral genotype NA1 (6.03 × 10−3 vs. 4.61 × 10−3 substitutions/site/year, p < 0.05). Some positive and many negative selection sites were found in both ON1 and NA1 strains. The results suggested that the new genotype ON1 is rapidly evolving with antigenic changes, leading to epidemics of HRSV infection in various countries.
    Infection Genetics and Evolution 10/2014; 28. DOI:10.1016/j.meegid.2014.09.030 · 3.02 Impact Factor
Show more