Nutrient-driven O-GlcNAc cycling - think globally but act locally

Journal of Cell Science (Impact Factor: 5.43). 04/2014; 127(9). DOI: 10.1242/jcs.113233
Source: PubMed


Proper cellular functioning requires that cellular machinery behave in a spatiotemporally regulated manner in response to global changes in nutrient availability. Mounting evidence suggests that one way this is achieved is through the establishment of physically defined gradients of O-GlcNAcylation (O-linked addition of N-acetylglucosamine to serine and threonine residues) and O-GlcNAc turnover. Because O-GlcNAcylation levels are dependent on the nutrient-responsive hexosamine signaling pathway, this modification is uniquely poised to inform upon the nutritive state of an organism. The enzymes responsible for O-GlcNAc addition and removal are encoded by a single pair of genes: both the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA, also known as MGEA5) genes are alternatively spliced, producing protein variants that are targeted to discrete cellular locations where they must selectively recognize hundreds of protein substrates. Recent reports suggest that in addition to their catalytic functions, OGT and OGA use their multifunctional domains to anchor O-GlcNAc cycling to discrete intracellular sites, thus allowing them to establish gradients of deacetylase, kinase and phosphatase signaling activities. The localized signaling gradients established by targeted O-GlcNAc cycling influence many important cellular processes, including lipid droplet remodeling, mitochondrial functioning, epigenetic control of gene expression and proteostasis. As such, the tethering of the enzymes of O-GlcNAc cycling appears to play a role in ensuring proper spatiotemporal responses to global alterations in nutrient supply.

10 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: O-GlcNAcylation has emerged as a critical post-translational modification important for a wide array of cellular processes. This modification has been identified on a large pool of intracellular proteins that have wide-ranging roles, including transcriptional regulation, cell cycle progression, and signaling, among others. Interestingly, in mammals the single gene encoding O-GlcNAc Transferase (OGT) is located on the X-chromosome near the Xist locus suggesting that tight dosage regulation is necessary for normal development. Herein, we highlight the importance of OGT dosage and consider how its genomic location can contribute to a gender-specific increased risk for a number of diseases.
    Biochemical and Biophysical Research Communications 06/2014; 453(2). DOI:10.1016/j.bbrc.2014.06.068 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: O-GlcNAc transferase is an essential mammalian enzyme responsible for transferring a single GlcNAc moiety from UDP-GlcNAc to specific serine/threonine residues of hundreds of nuclear and cytoplasmic proteins. This modification is dynamic and has been implicated in numerous signaling pathways. An unexpected second function for O-GlcNAc transferase as a protease involved in cleaving the epigenetic regulator HCF-1 has also been reported. Recent structural and biochemical studies that provide insight into the mechanism of glycosylation and HCF-1 cleavage will be described, with outstanding questions highlighted.
    Journal of Biological Chemistry 10/2014; 289(50). DOI:10.1074/jbc.R114.604405 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: O-GlcNAcylation is an abundant nutrient-driven modification linked to cellular signaling and regulation of gene expression. Utilizing precursors derived from metabolic flux, O-GlcNAc functions as a homeostatic regulator. The enzymes of O-GlcNAc cycling, OGT and O-GlcNAcase, act in mitochondria, the cytoplasm, and the nucleus in association with epigenetic “writers” and “erasers” of the histone code. Both O-GlcNAc and O-phosphate modify repeats within the RNA polymerase II C-terminal domain (CTD). By communicating with the histone and CTD codes, O-GlcNAc cycling provides a link between cellular metabolic status and the epigenetic machinery. Thus, O-GlcNAcylation is poised to influence trans-generational epigenetic inheritance.
    Journal of Biological Chemistry 10/2014; 289(50). DOI:10.1074/jbc.R114.595439 · 4.57 Impact Factor
Show more