Lorazepam vs Diazepam for Pediatric Status Epilepticus A Randomized Clinical Trial

JAMA The Journal of the American Medical Association (Impact Factor: 30.39). 04/2014; 311(16):1652-60. DOI: 10.1001/jama.2014.2625
Source: PubMed

ABSTRACT Benzodiazepines are considered first-line therapy for pediatric status epilepticus. Some studies suggest that lorazepam may be more effective or safer than diazepam, but lorazepam is not Food and Drug Administration approved for this indication.
To test the hypothesis that lorazepam has better efficacy and safety than diazepam for treating pediatric status epilepticus.
This double-blind, randomized clinical trial was conducted from March 1, 2008, to March 14, 2012. Patients aged 3 months to younger than 18 years with convulsive status epilepticus presenting to 1 of 11 US academic pediatric emergency departments were eligible. There were 273 patients; 140 randomized to diazepam and 133 to lorazepam.
Patients received either 0.2 mg/kg of diazepam or 0.1 mg/kg of lorazepam intravenously, with half this dose repeated at 5 minutes if necessary. If status epilepticus continued at 12 minutes, fosphenytoin was administered.
The primary efficacy outcome was cessation of status epilepticus by 10 minutes without recurrence within 30 minutes. The primary safety outcome was the performance of assisted ventilation. Secondary outcomes included rates of seizure recurrence and sedation and times to cessation of status epilepticus and return to baseline mental status. Outcomes were measured 4 hours after study medication administration.
Cessation of status epilepticus for 10 minutes without recurrence within 30 minutes occurred in 101 of 140 (72.1%) in the diazepam group and 97 of 133 (72.9%) in the lorazepam group, with an absolute efficacy difference of 0.8% (95% CI, -11.4% to 9.8%). Twenty-six patients in each group required assisted ventilation (16.0% given diazepam and 17.6% given lorazepam; absolute risk difference, 1.6%; 95% CI, -9.9% to 6.8%). There were no statistically significant differences in secondary outcomes except that lorazepam patients were more likely to be sedated (66.9% vs 50%, respectively; absolute risk difference, 16.9%; 95% CI, 6.1% to 27.7%).
Among pediatric patients with convulsive status epilepticus, treatment with lorazepam did not result in improved efficacy or safety compared with diazepam. These findings do not support the preferential use of lorazepam for this condition. Identifier: NCT00621478.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Convulsive status epilepticus (SE) is one of the most frequent and severe neurological emergencies in both adults and children. A timely administration of appropriate antiepileptic drugs (AEDs) can stop seizures early and markedly improve outcome. Areas covered: The main treatment strategies for SE are reviewed with an emphasis on initial treatments. The established first-line treatment consists of benzodiazepines, most frequently intravenous lorazepam. Benzodiazepines that do not require intravenous administration like intranasal midazolam or intramuscular midazolam are becoming more popular because of easier administration in the field. Other benzodiazepines may also be effective. After treatment with benzodiazepines, treatment with fosphenytoin and phenobarbital is usually recommended. Other intravenously available AEDs, such as valproate and levetiracetam, may be as effective and safe as fosphenytoin and phenobarbital, have a faster infusion time and better pharmacokinetic profile. The rationale behind the need for an early treatment of SE is discussed. The real-time delays of AED administration in clinical practice are described. Expert opinion: There is limited evidence to support what the best initial benzodiazepine or the best non-benzodiazepine AED is. Recent and developing multicenter trials are evaluating the best treatment options and will likely modify the recommended treatment choices in SE in the near future. Additionally, more research is needed to understand how different treatment options modify prognosis in SE. Timely implementation of care protocols to minimize treatment delays is crucial.
    Expert Opinion on Pharmacotherapy 01/2015; 16(4):1-14. DOI:10.1517/14656566.2015.997212 · 3.09 Impact Factor
  • JAMA The Journal of the American Medical Association 09/2014; 312(9):962. DOI:10.1001/jama.2014.8745 · 30.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The US federal regulation "Exception from Informed Consent for Emergency Research," 21 Code of Federal Regulations 50.24, permits emergency research without informed consent under limited conditions. Additional safeguards to protect human subjects include requirements for community consultation and public disclosure prior to starting the research. Because the regulations are vague about these requirements, Institutional Review Boards determine the adequacy of these activities at a local level. Thus, there is potential for broad interpretation and practice variation.
    Clinical Trials 11/2014; 12(1). DOI:10.1177/1740774514555586 · 1.94 Impact Factor