Article

Estimating the Fitness Advantage Conferred by Permissive Neuraminidase Mutations in Recent Oseltamivir-Resistant A(H1N1)pdm09 Influenza Viruses

Virginia-Maryland Regional College of Veterinary Medicine, United States of America
PLoS Pathogens (Impact Factor: 8.06). 04/2014; 10(4):e1004065. DOI: 10.1371/journal.ppat.1004065
Source: PubMed

ABSTRACT Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.

Download full-text

Full-text

Available from: James M Mccaw, Aug 20, 2014
0 Followers
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significant changes in the circulation of antiviral-resistant influenza viruses have occurred over the last decade. The emergence and continued circulation of adamantane-resistant A(H3N2) and A(H1N1)pdm09 viruses mean that the adamantanes are no longer recommended for use. Resistance to the newer class of drugs, the neuraminidase inhibitors, is typically associated with poorer viral replication and transmission. But 'permissive' mutations, that compensated for impairment of viral function in A(H1N1) viruses during 2007/2008, enabled them to acquire the H275Y NA resistance mutation without fitness loss, resulting in their rapid global spread. Permissive mutations now appear to be present in A(H1N1)pdm09 viruses thereby increasing the risk that oseltamivir-resistant A(H1N1)pdm09 viruses may also spread globally, a concerning scenario given that oseltamivir is the most widely used influenza antiviral.
    Current Opinion in Virology 05/2014; 8C:22-29. DOI:10.1016/j.coviro.2014.04.009 · 6.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 10,641 viruses collected by WHO-recognized National Influenza Centres between May 2013 and May 2014 to determine 50% inhibitory concentration (IC50) data for neuraminidase inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. In addition, neuraminidase (NA) sequence data, available from the WHO CCs and from sequence databases (n=3206), were screened for amino acid substitutions associated with reduced NAI susceptibility. Ninety-five per cent of the viruses tested by the WHO CCs were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 2% (n=172) showed highly reduced inhibition (HRI) against at least one of the four NAIs, commonly oseltamivir, while 0.3% (n=32) showed reduced inhibition (RI). Those showing HRI were A(H1N1)pdm09 with NA H275Y (n=169), A(H3N2) with NA E119V (n=1), B/Victoria-lineage with NA E117G (n=1) and B/Yamagata-lineage with NA H273Y (n=1); amino acid position numbering is A subtype and B type specific. Although approximately 98% of circulating viruses tested during the 2013-2014 period were sensitive to all four NAIs, a large community cluster of A(H1N1)pdm09 viruses with the NA H275Y substitution from patients with no previous exposure to antivirals was detected in Hokkaido, Japan. Significant numbers of A(H1N1)pdm09 NA H275Y viruses were also detected in China and the United States: phylogenetic analyses showed that the Chinese viruses were similar to those from Japan, while the United States viruses clustered separately from those of the Hokkaido outbreak, indicative of multiple resistance-emergence events. Consequently, global surveillance of influenza antiviral susceptibility should be continued from a public health perspective. Copyright © 2015. Published by Elsevier B.V.
    Antiviral research 07/2014; DOI:10.1016/j.antiviral.2014.07.001 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuraminidase inhibitors (NAIs) have been widely used to control influenza infection, but their increased use could promote global emergence of resistant variants. Although various mutations associated with NAI resistance have been identified, the amino acid substitutions that confer multidrug resistance with undiminished viral fitness remain poorly understood. We therefore screened known mutation(s) that could confer multidrug resistance to currently approved NAIs oseltamivir, zanamivir, and peramivir by assessing recombinant viruses with mutant NA genes (catalytic residues, R152K and R292K; framework residues, E119A/D/G, D198N, H274Y, and N294S) in the backbones of the 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza (HPAI) H5N1 viruses. Of the 14 single- and double-mutant viruses recovered in the backbone of pH1N1, 4 variants (E119D, E119A/D/G-H274Y) exhibited reduced inhibition to all the NAIs and 2 variants (E119D and E119D-H274Y) retained the overall properties of gene stability, replicative efficiency, pathogenicity, and transmissibility in vitro and in vivo. Of the 9 recombinant H5N1 viruses, 4 variants (E119D, E119A/D/G-H274Y) also showed reduced inhibition to all the NAIs, though their overall viral fitness was impaired in vitro and/or in vivo. Thus, single mutations or certain combination of the established mutations could confer potential multidrug resistance to pH1N1 or HPAI H5N1 viruses. Our findings emphasize the urgency of developing alternative drugs against influenza virus infection.
    Journal of Virology 10/2014; 89(1). DOI:10.1128/JVI.02485-14 · 4.65 Impact Factor
Show more