VISTA Regulates the Development of Protective Antitumor Immunity

Cancer Research (Impact Factor: 9.33). 04/2014; 74(7):1933-44. DOI: 10.1158/0008-5472.CAN-13-1506
Source: PubMed


V-domain Ig suppressor of T-cell activation (VISTA) is a novel negative checkpoint ligand that is homologous to PD-L1 and suppresses T-cell activation. This study demonstrates the multiple mechanisms whereby VISTA relieves negative regulation by hematopoietic cells and enhances protective antitumor immunity. VISTA is highly expressed on myeloid cells and Foxp3(+)CD4(+) regulatory cells, but not on tumor cells within the tumor microenvironment (TME). VISTA monoclonal antibody (mAb) treatment increased the number of tumor-specific T cells in the periphery and enhanced the infiltration, proliferation, and effector function of tumor-reactive T cells within the TME. VISTA blockade altered the suppressive feature of the TME by decreasing the presence of monocytic myeloid-derived suppressor cells and increasing the presence of activated dendritic cells within the tumor microenvironment. In addition, VISTA blockade impaired the suppressive function and reduced the emergence of tumor-specific Foxp3(+)CD4(+) regulatory T cells. Consequently, VISTA mAb administration as a monotherapy significantly suppressed the growth of both transplantable and inducible melanoma. Initial studies explored a combinatorial regimen using VISTA blockade and a peptide-based cancer vaccine with TLR agonists as adjuvants. VISTA blockade synergized with the vaccine to effectively impair the growth of established tumors. Our study therefore establishes a foundation for designing VISTA-targeted approaches either as a monotherapy or in combination with additional immune-targeted strategies for cancer immunotherapy. Cancer Res; 74(7); 1933-44. ©2014 AACR.

35 Reads
  • Source
    • "Studies in mice suggest contradictory functions for PD-1H, with one study suggesting a stimulatory role [10] while others suggest a predominantly inhibitory role [9], [21], [22]. The reason for this seeming discrepancy is not clear. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic immune activation that persists despite anti-retroviral therapy (ART) is the strongest predictor of disease progression in HIV infection. Monocyte/macrophages in HIV-infected individuals are known to spontaneously secrete cytokines, although neither the mechanism nor the molecules involved are known. Here we show that overexpression of the newly described co-stimulatory molecule, PD1 homologue (PD-1H) in human monocyte/macrophages is sufficient to induce spontaneous secretion of multiple cytokines. The process requires signaling via PD-1H as cytokine secretion could be abrogated by deletion of the cytoplasmic domain. Such overexpression of PD-1H, associated with spontaneous cytokine expression is seen in monocytes from chronically HIV-infected individuals and this correlates with immune activation and CD4 depletion, but not viral load. Moreover, antigen presentation by PD-1H-overexpressing monocytes results in enhanced cytokine secretion by HIV-specific T cells. These results suggest that PD-1H might play a crucial role in modulating immune activation and immune response in HIV infection.
    PLoS ONE 10/2014; 9(10):e109103. DOI:10.1371/journal.pone.0109103 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: V-domain Ig suppressor of T cell activation (VISTA) is a potent negative regulator of T-cell function that is expressed on hematopoietic cells. VISTA levels are heightened within the tumor microenvironment, in which its blockade can enhance antitumor immune responses in mice. In humans, blockade of the related programmed cell death 1 (PD-1) pathway has shown great potential in clinical immunotherapy trials. Here, we report the structure of human VISTA and examine its function in lymphocyte negative regulation in cancer. VISTA is expressed predominantly within the hematopoietic compartment with highest expression within the myeloid lineage. VISTA-Ig suppressed proliferation of T cells but not B cells and blunted the production of T-cell cytokines and activation markers. Our results establish VISTA as a negative checkpoint regulator that suppresses T-cell activation, induces Foxp3 expression, and is highly expressed within the tumor microenvironment. By analogy to PD-1 and PD-L1 blockade, VISTA blockade may offer an immunotherapeutic strategy for human cancer. Cancer Res; 74(7); 1924-32. ©2013 AACR.
    Cancer Research 04/2014; 74(7):1924-32. DOI:10.1158/0008-5472.CAN-13-1504 · 9.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past few years, the field of cancer immunotherapy has made great progress and is finally starting to change the way cancer is treated. We are now learning that multiple negative checkpoint regulators (NCR) restrict the ability of T-cell responses to effectively attack tumors. Releasing these brakes through antibody blockade, first with anti-CTLA4 and now followed by anti-PD1 and anti-PDL1, has emerged as an exciting strategy for cancer treatment. More recently, a new NCR has surfaced called V-domain immunoglobulin (Ig)-containing suppressor of T-cell activation (VISTA). This NCR is predominantly expressed on hematopoietic cells, and in multiple murine cancer models is found at particularly high levels on myeloid cells that infiltrated the tumors. Preclinical studies with VISTA blockade have shown promising improvement in antitumor T-cell responses, leading to impeded tumor growth and improved survival. Clinical trials support combined anti-PD1 and anti-CTLA4 as safe and effective against late-stage melanoma. In the future, treatment may involve combination therapy to target the multiple cell types and stages at which NCRs, including VISTA, act during adaptive immune responses. Cancer Immunol Res; 2(6); 510-7. ©2014 AACR.
    06/2014; 2(6):510-517. DOI:10.1158/2326-6066.CIR-14-0072
Show more