Targeting Mitochondria for Neuroprotection in Parkinson Disease.

JAMA neurology 03/2014; 71(5). DOI: 10.1001/jamaneurol.2014.64
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are essential for ensuring numerous fundamental physiological processes such as cellular energy, redox balance, modulation of Ca(2+) signaling and important biosynthetic pathways. They also govern the cell fate by participating in the apoptosis pathway. The mitochondrial shape, volume, number and distribution within the cells are strictly controlled. The regulation of these parameters has an impact on mitochondrial function, especially in the central nervous system, where trafficking of mitochondria is critical to their strategic intracellular distribution, presumably according to local energy demands. Thus, the maintenance of a healthy mitochondrial population is essential to avoid the impairment of the processes they regulate: for this purpose, cells have developed mechanisms involving a complex system of quality control to remove damaged mitochondria, or to renew them. Defects of these processes impair mitochondrial function and lead to disordered cell function, i.e., to a disease condition. Given the standard role of mitochondria in all cells, it might be expected that their dysfunction would give rise to similar defects in all tissues. However, damaged mitochondrial function has pleiotropic effects in multicellular organisms, resulting in diverse pathological conditions, ranging from cardiac and brain ischemia, to skeletal muscle myopathies to neurodegenerative diseases. In this review, we will focus on the relationship between mitochondrial (and cellular) derangements and Ca(2+) dysregulation in neurodegenerative diseases, emphasizing the evidence obtained in genetic models. Common patterns, that recognize the derangement of Ca(2+) and energy control as a causative factor, have been identified: advances in the understanding of the molecular regulation of Ca(2+) homeostasis, and on the ways in which it could become perturbed in neurological disorders, may lead to the development of therapeutic strategies that modulate neuronal Ca(2+) signaling.
    Cell calcium 05/2012; 52(1):73-85. · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A pilot study of high dose coenzyme Q(10) (CoQ(10))/vitamin E therapy in Friedreich's ataxia (FRDA) patients resulted in significant clinical improvements in most patients. This study investigated the potential for this treatment to modify clinical progression in FRDA in a randomized double blind trial. Fifty FRDA patients were randomly divided into high or low dose CoQ(10)/ vitamin E groups. The change in International Co-operative Ataxia Ratings Scale (ICARS) was assessed over 2 years as the primary end-point. A post hoc analysis was made using cross-sectional data. At baseline serum CoQ(10) and vitamin E levels were significantly decreased in the FRDA patients (P < 0.001). During the trial CoQ(10) and vitamin E levels significantly increased in both groups (P < 0.01). The primary and secondary end-points were not significantly different between the therapy groups. When compared to cross-sectional data 49% of all patients demonstrated improved ICARS scores. This responder group had significantly lower baseline serum CoQ(10) levels. A high proportion of FRDA patients have a decreased serum CoQ(10) level which was the best predictor of a positive clinical response to CoQ(10)/vitamin E therapy. Low and high dose CoQ(10)/vitamin E therapies were equally effective in improving ICARS scores.
    European Journal of Neurology 01/2009; 15(12):1371-9. · 3.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chapters throughout this volume illustrate the many contributions of mitochondria to the maintenance of normal cell and tissue function, experienced as the health of the individual. Mitochondria are essential for maintaining aspects of physiology as fundamental as cellular energy balance, the modulation of calcium signalling, in defining cellular redox balance, and they house significant biosynthetic pathways. Mitochondrial numbers and volume within cells are regulated and have an impact on their functional roles, while, especially in the CNS (central nervous system), mitochondrial trafficking is critical to ensure the cellular distribution and strategic localization of mitochondria, presumably driven by local energy demand. Maintenance of a healthy mitochondrial population involves a complex system of quality control, involving degrading misfolded proteins, while damaged mitochondria are renewed by fusion or removed by autophagy. It seems evident that mechanisms that impair any of these processes will impair mitochondrial function and cell signalling pathways, leading to disordered cell function which manifests as disease. As gatekeepers of cell life and cell death, mitochondria regulate both apoptotic and necrotic cell death, and so at its most extreme, disturbances involving these pathways may trigger untimely cell death. Conversely, the lack of appropriate cell death can lead to inappropriate tissue growth and development of tumours, which are also characterized by altered mitochondrial metabolism. The centrality of mitochondrial dysfunction to a surprisingly wide range of major human diseases is slowly becoming recognized, bringing with it the prospect of novel therapeutic approaches to treat a multitude of unpleasant and pervasive diseases.
    Essays in Biochemistry 06/2010; 47:115-37. · 4.39 Impact Factor