Article

Transcriptome analysis identifies Bacillus anthracis genes that respond to CO2 through an AtxA-dependent mechanism

BMC Genomics (Impact Factor: 4.04). 03/2014; 15(1):229. DOI: 10.1186/1471-2164-15-229
Source: PubMed

ABSTRACT Upon infection of a mammalian host, Bacillus anthracis responds to host cues, and particularly to elevated temperature (37[degree sign]C) and bicarbonate/CO2 concentrations, with increased expression of virulence factors that include the anthrax toxins and extracellular capsular layer. This response requires the presence of the pXO1 virulence plasmid-encoded pleiotropic regulator AtxA. To better understand the genetic basis of this response, we utilized a controlled in vitro system and Next Generation sequencing to determine and compare RNA expression profiles of the parental strain and an isogenic AtxA-deficient strain in a 2 x 2 factorial design with growth environments containing or lacking carbon dioxide.
We found 15 pXO1-encoded genes and 3 chromosomal genes that were strongly regulated by the separate or synergistic actions of AtxA and carbon dioxide. The majority of the regulated genes responded to both AtxA and carbon dioxide rather than to just one of these factors. Interestingly, we identified two previously unrecognized small RNAs that are highly expressed under physiological carbon dioxide concentrations in an AtxA-dependent manner. Expression levels of the two small RNAs were found to be higher than that of any other gene differentially expressed in response to these conditions. Secondary structure and small RNA-mRNA binding predictions for the two small RNAs suggest that they may perform important functions in regulating B. anthracis virulence.
A majority of genes on the virulence plasmid pXO1 that are regulated by the presence of either CO2 or AtxA separately are also regulated synergistically in the presence of both. These results also elucidate novel pXO1-encoded small RNAs that are associated with virulence conditions.

Download full-text

Full-text

Available from: Andrei P Pomerantsev, Aug 26, 2014
0 Followers
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.
    Nature 06/2003; 423(6935):81-6. DOI:10.1038/nature01586 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus anthracis is the etiologic agent of anthrax, an acute fatal disease among mammals. It was thought to differ from Bacillus cereus, an opportunistic pathogen and cause of food poisoning, by the presence of plasmids pXO1 and pXO2, which encode the lethal toxin complex and the poly-gamma-d-glutamic acid capsule, respectively. This work describes a non-B. anthracis isolate that possesses the anthrax toxin genes and is capable of causing a severe inhalation anthrax-like illness. Although initial phenotypic and 16S rRNA analysis identified this isolate as B. cereus, the rapid generation and analysis of a high-coverage draft genome sequence revealed the presence of a circular plasmid, named pBCXO1, with 99.6% similarity with the B. anthracis toxin-encoding plasmid, pXO1. Although homologues of the pXO2 encoded capsule genes were not found, a polysaccharide capsule cluster is encoded on a second, previously unidentified plasmid, pBC218. A/J mice challenged with B. cereus G9241 confirmed the virulence of this strain. These findings represent an example of how genomics could rapidly assist public health experts responding not only to clearly identified select agents but also to novel agents with similar pathogenic potentials. In this study, we combined a public health approach with genome analysis to provide insight into the correlation of phenotypic characteristics and their genetic basis.
    Proceedings of the National Academy of Sciences 07/2004; 101(22):8449-54. DOI:10.1073/pnas.0402414101 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains.Methodology/Principal FindingsHere we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group—a pneumonia-causing B. cereus strain (G9241), an attenuated strain of B. anthracis (Sterne 34F2), and an avirulent B. cereus strain (10987)—during exponential growth in two distinct atmospheric environments: 14% CO2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment.Conclusions/SignificanceWe have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and highlights the importance of looking beyond differences in gene content in comparative genomics studies.
    PLoS ONE 03/2009; 4(3). DOI:10.1371/journal.pone.0004904 · 3.53 Impact Factor