Transcriptome analysis identifies Bacillus anthracis genes that respond to CO2 through an AtxA-dependent mechanism

BMC Genomics (Impact Factor: 3.99). 03/2014; 15(1):229. DOI: 10.1186/1471-2164-15-229
Source: PubMed


Upon infection of a mammalian host, Bacillus anthracis responds to host cues, and particularly to elevated temperature (37[degree sign]C) and bicarbonate/CO2 concentrations, with increased expression of virulence factors that include the anthrax toxins and extracellular capsular layer. This response requires the presence of the pXO1 virulence plasmid-encoded pleiotropic regulator AtxA. To better understand the genetic basis of this response, we utilized a controlled in vitro system and Next Generation sequencing to determine and compare RNA expression profiles of the parental strain and an isogenic AtxA-deficient strain in a 2 x 2 factorial design with growth environments containing or lacking carbon dioxide.
We found 15 pXO1-encoded genes and 3 chromosomal genes that were strongly regulated by the separate or synergistic actions of AtxA and carbon dioxide. The majority of the regulated genes responded to both AtxA and carbon dioxide rather than to just one of these factors. Interestingly, we identified two previously unrecognized small RNAs that are highly expressed under physiological carbon dioxide concentrations in an AtxA-dependent manner. Expression levels of the two small RNAs were found to be higher than that of any other gene differentially expressed in response to these conditions. Secondary structure and small RNA-mRNA binding predictions for the two small RNAs suggest that they may perform important functions in regulating B. anthracis virulence.
A majority of genes on the virulence plasmid pXO1 that are regulated by the presence of either CO2 or AtxA separately are also regulated synergistically in the presence of both. These results also elucidate novel pXO1-encoded small RNAs that are associated with virulence conditions.

Download full-text


Available from: Andrei P Pomerantsev, Aug 26, 2014
  • Source

    The Comprehensive Sourcebook of Bacterial Protein Toxins, 01/2015: pages 361-396; , ISBN: 9780128001882
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identifying the factors responsible for survival and virulence of Bacillus anthracis within the host is prerequisite for the development of therapeutics against anthrax. Host provides several stresses as well as many advantages to the invading pathogen. Inorganic phosphate (Pi) starvation within the host has been considered as one of the major contributing factors in the establishment of infection by pathogenic microorganisms. Here, we report for the first time that Pi fluctuation encountered by B. anthracis at different stages of its life cycle within the host, contributes significantly in its pathogenesis. In this study, Pi starvation was found to hasten the onset of infection cycle by promoting spore germination. After germination, it was found to impede cell growth. In addition, phosphate starved bacilli showed more antibiotic tolerance. Interestingly, phosphate starvation enhanced the pathogenicity of B. anthracis by augmenting its invasiveness in macrophages in vitro. B. anthracis grown under phosphate starvation were also found to be more efficient in establishing lethal infections in mouse model as well. Phosphate starvation increased B. anthracis virulence by promoting the secretion of primary virulence factors like protective antigen (PA), lethal factor (LF) and edema factor (EF). Thus, this study affirms that besides other host mediated factors, phosphate limitation may also contribute B. anthracis for successfully establishing itself within the host. This study is a step forward in delineating its pathophysiology that might help in understanding the pathogenesis of anthrax. Copyright © 2015 Elsevier GmbH. All rights reserved.
    International journal of medical microbiology: IJMM 06/2015; 305(6). DOI:10.1016/j.ijmm.2015.06.001 · 3.61 Impact Factor