Article

Novel MicroRNA Candidates and miRNA-mRNA Pairs in Embryonic Stem (ES) Cells

Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS ONE (Impact Factor: 3.53). 07/2008; 3(7). DOI: 10.1371/journal.pone.0002548
Source: PubMed Central

ABSTRACT Background
MicroRNAs (miRNAs: a class of short non-coding RNAs) are emerging as important agents of post transcriptional gene regulation and integral components of gene networks. MiRNAs have been strongly linked to stem cells, which have a remarkable dual role in development. They can either continuously replenish themselves (self-renewal), or differentiate into cells that execute a limited number of specific actions (pluripotence).

Methodology/Principal Findings
In order to identify novel miRNAs from narrow windows of development we carried out an in silico search for micro-conserved elements (MCE) in adult tissue progenitor transcript sequences. A plethora of previously unknown miRNA candidates were revealed including 545 small RNAs that are enriched in embryonic stem (ES) cells over adult cells. Approximately 20% of these novel candidates are down-regulated in ES (Dicer−/−) ES cells that are impaired in miRNA maturation. The ES-enriched miRNA candidates exhibit distinct and opposite expression trends from mmu-mirs (an abundant class in adult tissues) during retinoic acid (RA)-induced ES cell differentiation. Significant perturbation of trends is found in both miRNAs and novel candidates in ES (GCNF−/−) cells, which display loss of repression of pluripotence genes upon differentiation.

Conclusion/Significance
Combining expression profile information with miRNA target prediction, we identified miRNA-mRNA pairs that correlate with ES cell pluripotence and differentiation. Perturbation of these pairs in the ES (GCNF−/−) mutant suggests a role for miRNAs in the core regulatory networks underlying ES cell self-renewal, pluripotence and differentiation.

0 Bookmarks
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: Recent progress in genomic analysis and other biochemical methods has led to the discovery of a large population of microRNAs (miRNAs), which have been demonstrated to play important roles in diseases and a wide range of developmental processes. Characterization of miRNA expression profiles in different stages of ovarian follicular development and early embryogenesis has suggested the potential roles of miRNAs in follicular development, maturation of oocytes, and preimplantation embryonic development. This review focuses on the current studies of miRNAs involved in ovarian and early embryonic development in cattle.
    Turkish Journal of Veterinary and Animal Sciences 12/2014; 38(38):599-605. DOI:10.3906/vet-1409-1 · 0.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells (SCs) have self-renew ability and give rise to committed progenitors of a single or multiple lineages. Elucidating the genetic circuits that govern SCs to self-renew and to differentiate, is essential to understand the roles of SCs and promising of these cells in regenerative medicine. MicroRNAs are widespread agents playing critical roles in regulatory networks of transcriptional expression and have been strongly linked with SCs for simultaneous maintenance of pluripotency properties such as self-renewal. This review aims to provide state-of-the-art presentations on microRNA-dependent molecular mechanisms contribute to the maintenance of pluripotency. Understanding the microRNA signature interactions, in conjunction with cell signaling is critical for development of improved strategies to reprogram differentiated cells or direct differentiation of pluripotent cells.
    The International Journal of Biochemistry & Cell Biology 08/2014; DOI:10.1016/j.biocel.2014.08.008 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM) and CYP26B1- inhibitor (1 µM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution serves as a useful resource for further elucidation of the regulatory role of individual miRNA in RA synchronized canine spermatogenesis.
    PLoS ONE 06/2014; 9(6):e99433. DOI:10.1371/journal.pone.0099433 · 3.53 Impact Factor

Full-text (2 Sources)

Download
76 Downloads
Available from
Jun 4, 2014