Erratum to: Green tea extract enhances parieto-frontal connectivity during working memory processing

Psychopharmacology (Impact Factor: 3.88). 03/2014; 231(19). DOI: 10.1007/s00213-014-3526-1
Source: PubMed


It has been proposed that green tea extract may have a beneficial impact on cognitive functioning, suggesting promising clinical implications. However, the neural mechanisms underlying this putative cognitive enhancing effect of green tea extract still remain unknown.
This study investigates whether the intake of green tea extract modulates effective brain connectivity during working memory processing and whether connectivity parameters are related to task performance.
Using a double-blind, counterbalanced, within-subject design, 12 healthy volunteers received a milk whey-based soft drink containing 27.5 g of green tea extract or a milk whey-based soft drink without green tea as control substance while undergoing functional magnetic resonance imaging. Working memory effect on effective connectivity between frontal and parietal brain regions was evaluated using dynamic causal modeling.
Green tea extract increased the working memory induced modulation of connectivity from the right superior parietal lobule to the middle frontal gyrus. Notably, the magnitude of green tea induced increase in parieto-frontal connectivity positively correlated with improvement in task performance.
Our findings provide first evidence for the putative beneficial effect of green tea on cognitive functioning, in particular, on working memory processing at the neural system level by suggesting changes in short-term plasticity of parieto-frontal brain connections. Modeling effective connectivity among frontal and parietal brain regions during working memory processing might help to assess the efficacy of green tea for the treatment of cognitive impairments in psychiatric disorders such as dementia.

Download full-text


Available from: Stefan Borgwardt, Mar 20, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Green tea is known to have various health benefits for humans. However, the effect of green tea consumption on cognitive dysfunction remains to be clinically verified. We conducted a clinical study to investigate the effects of green tea consumption on cognitive dysfunction. Twelve elderly nursing home residents with cognitive dysfunction (Mini-Mental State Examination Japanese version (MMSE-J) score: <28) participated in the study (2 men, 10 women; mean age, 88 years). The participants consumed green tea powder 2 g/day for 3 months. After three months of green tea consumption, the participants' MMSE-J scores were significantly improved (before, 15.3 ± 7.7; after, 17.0 ± 8.2; p = 0.03). This result suggests that green tea consumption may be effective in improving cognitive function or reducing the progression of cognitive dysfunction; however, long-term large-scale controlled studies are needed to further clarify the effect.
    Nutrients 10/2014; 6(10):4032-4042. DOI:10.3390/nu6104032 · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Converging evidence identifies stress-related disorders as putative risk factors for Alzheimer Disease (AD). This article reviews evidence on the complex interplay of stress, aging, and genes-epigenetics interactions. The recent classification of AD into preclinical, mild cognitive impairment, and AD offers a window for intervention to prevent, delay, or modify the course of AD. Evidence in support of the cognitive effects of epigenetics-diet, and nutraceuticals is reviewed. A proactive epigenetics diet and nutraceuticals program holds promise as potential buffer against the negative impact of aging and stress responses on cognition, and can optimize vascular, metabolic, and brain health in the community. Copyright © 2014 Elsevier Inc. All rights reserved.
    Psychiatric Clinics of North America 12/2014; 37(4):591-623. DOI:10.1016/j.psc.2014.09.001 · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous research has revealed that glucose and fructose ingestion differentially modulate release of satiation hormones. Recent studies have begun to elucidate brain-gut interactions with neuroimaging approaches such as magnetic resonance imaging (MRI), but the neural mechanism underlying different behavioral and physiological effects of glucose and fructose are unclear. In this paper, we have used resting state functional MRI to explore whether acute glucose and fructose ingestion also induced dissociable effects in the neural system. Using a cross-over, double-blind, placebo-controlled design, we compared resting state functional connectivity (rsFC) strengths within the basal ganglia/limbic network in 12 healthy lean males. Each subject was administered fructose, glucose and placebo on three separate occasions. Subsequent correlation analysis was used to examine relations between rsFC findings and plasma concentrations of satiation hormones and subjective feelings of appetite. Glucose ingestion induced significantly greater elevations in plasma glucose, insulin, GLP-1 and GIP, while feelings of fullness increased and prospective food consumption decreased relative to fructose. Furthermore, glucose increased rsFC of the left caudatus and putamen, precuneus and lingual gyrus more than fructose, whereas within the basal ganglia/limbic network, fructose increased rsFC of the left amygdala, left hippocampus, right parahippocampus, orbitofrontal cortex and precentral gyrus more than glucose. Moreover, compared to fructose, the increased rsFC after glucose positively correlated with the glucose-induced increase in insulin. Our findings suggest that glucose and fructose induce dissociable effects on rsFC within the basal ganglia/limbic network, which are probably mediated by different insulin levels. A larger study would be recommended in order to confirm these findings.
    PLoS ONE 06/2015; 10(6). DOI:10.1371/journal.pone.0130280 · 3.23 Impact Factor
Show more