Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography

Acta Physiologica (Impact Factor: 4.38). 03/2014; 211(1):135-146. DOI: 10.1111/apha.12272
Source: PubMed


Changes in muscle stiffness after exercise-induced muscle damage have been classically inferred from passive torque-angle curves. Elastographic techniques can be used to estimate the shear modulus of a localized muscular area. This study aimed to quantify the changes in shear elastic modulus in different regions of the elbow flexors after eccentric exercise and their relation to muscle length.
Shear elastic modulus and transverse relaxation time (T2 ) were measured in the biceps brachii and brachialis muscles of sixteen participants, before, 1h, 48h and 21 days after 3 sets of 10 maximal isokinetic eccentric contractions performed at 120°.s(-1) .
The shear elastic modulus of the elbow flexors significantly increased 1h (+46%; P=0.005), with no significant change at 48h and 21D, post-exercise. In contrast, T2 was not modified at 1h but significantly increased at 48h (+15%; P<0.05). The increase in shear elastic modulus was more pronounced at long muscle lengths, and reached a similar extent in the different regions of the elbow flexors. The normalized hysteresis area of shear elastic modulus-length relationship for the biceps brachii increased 1h post-exercise (31%) in comparison to the pre-exercise value (18%), but was not significantly altered after five stretching cycles (P=0.63).
Our results show homogeneous changes in muscle shear elastic modulus within and between elbow flexors. The greater increase in shear elastic modulus observed at long muscle lengths suggest the putative involvement of both cross-bridges number and titin in the modifications of muscle shear elastic modulus after damaging exercise. This article is protected by copyright. All rights reserved.

Download full-text


Available from: Gaël Guilhem, Apr 02, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isometric contractions induced by neuromuscular electrostimulation (NMES) have been shown to result in a prolonged force decrease but the time course of the potential central and peripheral factors have never been investigated. This study examined the specific time course of central and peripheral factors after isometric NMES-induced muscle damage. Twenty-five young healthy men were subjected to an NMES exercise consisting of 40 contractions for both legs. Changes in maximal voluntary contraction force of the knee extensors (MVC), peak evoked force during double stimulations at 10 Hz (Db10) and 100 Hz (Db100), its ratio (10∶100), voluntary activation, muscle soreness and plasma creatine kinase activity were assessed before, immediately after and throughout four days after NMES session. Changes in knee extensors volume and T2 relaxation time were also assessed at two (D2) and four (D4) days post-exercise. MVC decreased by 29% immediately after NMES session and was still 19% lower than the baseline value at D4. The decrease in Db10 was higher than in Db100 immediately and one day post-exercise resulting in a decrease (−12%) in the 10∶100 ratio. On the contrary, voluntary activation significantly decreased at D2 (−5%) and was still depressed at D4 (−5%). Muscle soreness and plasma creatine kinase activity increased after NMES and peaked at D2 and D4, respectively. T2 was also increased at D2 (6%) and D4 (9%). Additionally, changes in MVC and peripheral factors (e.g., Db100) were correlated on the full recovery period, while a significant correlation was found between changes in MVC and VA only from D2 to D4. The decrease in MVC recorded immediately after the NMES session was mainly due to peripheral changes while both central and peripheral contributions were involved in the prolonged force reduction. Interestingly, the chronological events differ from what has been reported so far for voluntary exercise-induced muscle damage.
    PLoS ONE 09/2014; 9(9):e107298. DOI:10.1371/journal.pone.0107298 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The objective of this study was to quantify the transverse forces in skeletal muscle subjected to constant compressive massage-like loading (MLL) following eccentric exercise (ECC). Methods Twenty-eight New Zealand White rabbits were used for this two-part study. For all testing, a customized electromechanical device was utilized to apply a constant compressive force MLL to the tibialis anterior (TA) muscle and the resultant transverse forces were quantified. The device consisted of two stepper motors that were positioned orthogonally to each other and connected to separate sliding tracks. A stainless steel cylindrical massage tip was mounted to a customized two-axis sensor consisting of two strain gauges with which forces along the two axes were measured. First, we determined the effects of tissue loading frequency and compression magnitude on transverse forces in the TA. Following a bout of ECC, sixteen rabbits were randomly assigned to a protocol with MLL frequency of 0.25 Hz or 0.5 Hz at a constant compressive force of 5 N or 10 N. Secondly, we utilized a protocol of 0.5 Hz, 10 N, 15 min MLL that was performed on 4 consecutive days commencing immediately post ECC (n = 6 animals) or 48 hours following ECC (n = 6 animals). Transverse forces were measured during all 4 MLL sessions for the entire 15 min duration for both the immediate and the delayed groups. Results Both frequency and magnitude of compressive force due to MLL showed an effect on the magnitude of transverse force (p < 0.05 for each parameter). Furthermore, MLL beginning immediately following ECC produced higher transverse forces than MLL delayed by 48 hours with an average 20% difference between the two MLL groups over the four day protocol. Forces were higher in the middle 5 minutes compared to the first 5 minutes for all MLL bouts in both groups. Conclusions Frequency and magnitude of MLL and timing for delivery of MLL following ECC affect resultant transverse force values for exercised muscle. The application of our findings to humans receiving massage following exercise remains unknown at this time.
    BMC Complementary and Alternative Medicine 10/2014; 14(1):393. DOI:10.1186/1472-6882-14-393 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the effect of exercise-induced muscle damage on muscle hardness and evaluate the relationship between muscle hardness and muscle damage indicators. Seven men (mean 25.3 years; 172.7 cm; 66.8 kg) performed the single-leg ankle plantar flexion exercise involving both concentric and eccentric contractions (10 sets of 40 repetitions). The hardness of the medial gastrocnemius (MG) was evaluated using ultrasound real-time tissue elastography before, from day 1 to 4, and day 7 after exercise. The strain ratio between the MG and a reference material was calculated. Simultaneously, we evaluated the magnetic resonance T2 value (an index of edema) of the triceps surae, the ankle dorsiflexion range of motion (ROM), and calf muscle soreness. Serum creatine kinase activity was assessed before, 2 and 4 h, and from day 1 to 4 after exercise. The MG showed lower strain ratio, indicating increased muscle hardness, on day 4 post-exercise (P < 0.01) and higher T2 values on days 1-7 post-exercise (P < 0.01) relative to each pre-exercise value. The ankle dorsiflexion ROM was lower on days 2-4 post-exercise (P < 0.01). The serum creatine kinase markedly increased on days 3 and 4 post-exercise (not significant). The degree of muscle soreness among the post-exercise time points was similar. The decreased strain ratio did not correlate with the increased T2, the decreased joint ROM or muscle soreness. Muscle hardness increased after strenuous resistance exercise, but the change was not related with muscle edema, decreased joint ROM, or muscle soreness resulting from muscle damage.
    SpringerPlus 07/2015; 4(1):308. DOI:10.1186/s40064-015-1094-4
Show more