Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training

The FASEB Journal (Impact Factor: 5.04). 03/2014; 28(6). DOI: 10.1096/fj.13-246595
Source: PubMed


Improved endurance exercise performance in adult humans after sprint interval training (SIT) has been attributed to mitochondrial biogenesis. However, muscle protein synthesis (MPS) and mitochondrial biogenesis during SIT have not been measured, nor have sex-specific differences. We hypothesized that males and females would have similar rates of MPS, mitochondrial biogenesis, and synthesis of individual proteins during SIT. Deuterium oxide (D2O) was orally administered to 21 adults [11 male, 10 female; mean age, 23±1 yr; body mass index (BMI), 22.8±0.6 kg/m(2); mean± se] for 4 wk, to measure protein synthesis rates while completing 9 sessions of 4-8 bouts of 30 s duration on a cycle ergometer separated by 4 min of active recovery. Samples of the vastus lateralis were taken before and 48 h after SIT. SIT increased maximum oxygen uptake (Vo2max, males 43.4±2.1-44.0±2.3; females 39.5±0.9-42.5±1.3 ml/kg/min; P=0.002). MPS was greater in the males than in the females in the mixed (∼150%; P < 0.001), cytosolic (∼135%; P=0.038), and mitochondrial (∼135%; P=0.056) fractions. The corresponding ontological clusters of individual proteins were significantly greater in the males than in the females (all P<0.00001). For the first time, we document greater MPS and mitochondrial biogenesis during SIT in males than in females and describe the synthetic response of individual proteins in humans during exercise training.-Scalzo, R. L., Peltonen, G. L., Binns, S. E., Shankaran, M., Giordano, G. R., Hartley, D. A., Klochak, A. L., Lonac, M. C., Paris, H. L. R., Szallar, S. E., Wood, L. M., Peelor, F. F., III, Holmes, W. E., Hellerstein, M. K., Bell, C., Hamilton, K. L., Miller, B. F. Greater muscle protein synthesis and mitochondrial biogenesis in males than in females during sprint interval training.

Download full-text


Available from: Benjamin Miller, Jul 28, 2014
159 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: We determined the effect of protein supplementation on anabolic signaling and rates of myofibrillar and mitochondrial protein synthesis after a single bout of concurrent training. Methods: Using a randomized crossover design, eight healthy males were assigned to experimental trials consisting of resistance exercise (8 × 5 leg extension, 80% 1RM) followed by cycling (30 min at approximately 70% V˙O2peak) with either postexercise protein (PRO, 25-g whey protein) or placebo (PLA) ingestion. Muscle biopsies were obtained at rest and at 1 and 4 h after exercise. Results: Akt and mTOR phosphorylation increased 1 h after exercise with PRO (175%-400%, P < 0.01) and was different from PLA (150%-300%, P < 0.001). Muscle RING finger 1 and atrogin-1 messenger RNA (mRNA) were elevated after exercise but were higher with PLA compared with those in PRO at 1 h (50%-315%, P < 0.05), whereas peroxisome proliferator-activated receptor gamma coactivator 1-alpha mRNA increased 4 h after exercise (620%-730%, P < 0.001), with no difference between treatments. Postexercise rates of myofibrillar protein synthesis increased above rest in both trials (75%-145%, P < 0.05) but were higher with PRO (67%, P < 0.05), whereas mitochondrial protein synthesis did not change from baseline. Conclusions: Our results show that a concurrent training session promotes anabolic adaptive responses and increases metabolic/oxidative mRNA expression in the skeletal muscle. PRO ingestion after combined resistance and endurance exercise enhances myofibrillar protein synthesis and attenuates markers of muscle catabolism and thus is likely an important nutritional strategy to enhance adaptation responses with concurrent training.
    Medicine &amp Science in Sports &amp Exercise 05/2014; 47(1). DOI:10.1249/MSS.0000000000000390 · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review: The main purpose of this review is to discuss novel methodological advances in the assessment of muscle protein synthesis (MPS) in response to protein feeding and resistance exercise. Recent findings: In the past 20 years, there has been a shift from application of the nitrogen balance methods toward the infusion of stable isotopic tracers to assess rates of MPS in response to a range of perturbations. Although this approach has enabled MPS to be assessed with a greater temporal resolution and precision, the method limits the capture of MPS to relatively short-duration infusions of approximately 3-12 h. Recent refinement of analytical methods to assess long-term MPS responses have now provided a platform for studying the impact of exercise and nutrition on muscle anabolism with an extended temporal resolution from hours to days or even weeks. Finally, novel insights into cellular signaling processes may help delineate the molecular mechanisms that govern skeletal muscle plasticity in response to exercise and feeding. Summary: Future work should focus on the impact of novel exercise and nutritional interventions on MPS in an extended postexercise adaptive period, that is, days. The findings of such investigations will help test the long-term efficacy of interventions to enhance skeletal muscle protein reconditioning and hypertrophy.
    Current Opinion in Clinical Nutrition and Metabolic Care 09/2014; 17(5):412-417. DOI:10.1097/MCO.0000000000000083 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interval training refers to the basic concept of alternating periods of relatively intense exercise with periods of lower-intensity effort or complete rest for recovery. Low-volume interval training refers to sessions that involve a relatively small total amount of exercise (i.e. ≤10 min of intense exercise), compared with traditional moderate-intensity continuous training (MICT) protocols that are generally reflected in public health guidelines. In an effort to standardize terminology, a classification scheme was recently proposed in which the term 'high-intensity interval training' (HIIT) be used to describe protocols in which the training stimulus is 'near maximal' or the target intensity is between 80 and 100 % of maximal heart rate, and 'sprint interval training' (SIT) be used for protocols that involve 'all out' or 'supramaximal' efforts, in which target intensities correspond to workloads greater than what is required to elicit 100 % of maximal oxygen uptake (VO2max). Both low-volume SIT and HIIT constitute relatively time-efficient training strategies to rapidly enhance the capacity for aerobic energy metabolism and elicit physiological remodeling that resembles changes normally associated with high-volume MICT. Short-term SIT and HIIT protocols have also been shown to improve health-related indices, including cardiorespiratory fitness and markers of glycemic control in both healthy individuals and those at risk for, or afflicted by, cardiometabolic diseases. Recent evidence from a limited number of studies has highlighted potential sex-based differences in the adaptive response to SIT in particular. It has also been suggested that specific nutritional interventions, in particular those that can augment muscle buffering capacity, such as sodium bicarbonate, may enhance the adaptive response to low-volume interval training.
    Sports Medicine 11/2014; 44 Suppl 2(Suppl 2):127-37. DOI:10.1007/s40279-014-0259-6 · 5.04 Impact Factor
Show more