Age and Sex Differences in Childhood and Adulthood obesity association with phthalates: Analyses of NHANES 2007-2010

Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, Georgia, 30341 USA
International journal of hygiene and environmental health (Impact Factor: 3.83). 07/2014; 217(6). DOI: 10.1016/j.ijheh.2014.02.005


Exposure to environmental chemicals may play a role in the development of obesity. Evidence suggests phthalate exposure may be associated with obesity in children and adults.

To examine the association of ten urinary phthalate metabolites mono-n-butyl phthalate (MnBP), mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-2-ethylhexyl phthalate (MEHP), mono-benzyl phthalate (MBzP), mono-(carboxylnonyl) phthalate (MCNP), and mono-(carboxyoctyl) phthalate (MCOP) grouped by molecular weight of their parent compounds with body weight outcomes in children, adolescent and adult participants in the National Health and Nutrition Examination Survey (NHANES) 2007-2010.

We performed multinomial logistic regression to analyze the association between obesity and urinary phthalate metabolite concentrations in children and adolescents and adults.

Low molecular weight (LMW) phthalate metabolites (MnBP, MEP and MiBP) are significantly (p < 0.05) associated with higher odds for obesity in male children and adolescents. High molecular weight (HMW) phthalate metabolites (MECPP, MEHHP, MEOHP, MEHP, MBzP, MCNP, and MCOP) and di-2-ethylhexyl phthalate (DEHP) metabolites (MEHHP, MEOHP, MEHP and MECPP) are significantly (p < 0.05) associated with higher OR for obesity in all adults. Additionally, DEHP metabolites are significantly associated with obesity in all female adults; whereas DEHP and HMW metabolites are significantly associated with OR for obesity in males 60 years and older.

We found age and sex differences in the association between urinary phthalate metabolite concentrations and body weight outcomes. Reverse causation cannot be excluded since overweight and obese people will have more fat mass, they may store more phthalates, thus leading to higher excretion concentrations.

Download full-text


Available from: Melanie Buser, Jul 02, 2014
92 Reads
  • Source
    • "Similar results were evident in the case of phthalates [87] [88] [89] that interact with the peroxisome proliferator-activated receptors (PPARs) [90], ligand-activated transcription factors. PPARs regulate genes important in adipocyte differentiation, adipogenesis and a number of metabolic processes, including lipid and glucose homeostasis [91]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The worldwide obesity epidemic is paralleled by a rise in the incidence of pancreatic disorders ranging from "fatty" pancreas to pancreatitis and cancer. Body fat accumulation and pancreatic dysfunctions have common pathways, mainly acting through insulin resistance and low-grade inflammation, frequently mediated by the epigenome. These mechanisms are affected by lifestyle and by the toxic effects of fat and pollutants. An early origin is common, starting in pediatric age or during the fetal life in response to nutritional factors, endocrine disruptor chemicals (EDCs) or parental exposure to toxics. A "fatty pancreas" is frequent in obese and is able to induce pancreatic damage. The fat is a target of EDCs and of the cytotoxic/mutagenic effects of heavy metals, and is the site of bioaccumulation of lipophilic and persistent pollutants related with insulin resistance and able to promote pancreatic cancer. Increased Body Mass Index (BMI) can act as independent risk factor for a more severe course of acute pancreatitis and obesity is also a well-known risk factor for pancreatic cancer, that is related with BMI, insulin resistance, and duration of exposure to the toxic effects of fat and/or of environmental pollutants. All these mechanisms involve gene-environment interactions through epigenetic factors, and might be manipulated by primary prevention measures. Further studies are needed, pointing to better assess the interplays of modifiable factors on both obesity and pancreatic diseases, and to verify the efficacy of primary prevention strategies involving lifestyle and environmental exposure to toxics
    European Journal of Internal Medicine 12/2014; 25(10):865-873. DOI:10.1016/j.ejim.2014.10.012 · 2.89 Impact Factor
  • Source
    • "Table 2 presents the results of human studies investigating the effects of phthalate exposure on obesity. Most epidemiologic studies examining the association between phthalate exposure and obesity have been based on the data from the National Health and Nutrition Examination Survey (NHANES)43,44,45,46). Regarding adulthood obesity, Stahlhut et al.43) demonstrated a positive association between urinary monoethyl phthalate (MEP), monobenzyl phthalate, mono(2-ethyl-5-hydroxylhexyl) phthalate, and mono(2-ethyl-5-oxohexyl) phthalate and waist circumference (WC) in male adults, using data from NHANES 1999-200243). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phthalates are commonly used as plasticizers and vehicles for cosmetic ingredients. Phthalate metabolites have documented biochemical activity including activating peroxisome proliferator-activated receptor and antiandrogenic effects, which may contribute to the development of obesity. In vitro and in vivo studies suggest that phthalates have significant effects on the development of obesity, especially after prenatal exposure at low doses. Although few studies have examined the effects of phthalate on obesity development in humans, some work has shown that phthalates affect humans and animals similarly. In this paper, we review the possible mechanisms of phthalate-induced obesity, and discuss evidence supporting the role of phthalates in the development of obesity in humans.
    06/2014; 19(2):69-75. DOI:10.6065/apem.2014.19.2.69
  • Fertility and Sterility 09/2014; 102(3):e245-e246. DOI:10.1016/j.fertnstert.2014.07.835 · 4.59 Impact Factor
Show more