Dissolution of the metal sensitizers Ni, Be, Cr in artificial sweat to improve estimates of dermal bioaccessibility.

Environmental science. Processes & impacts 02/2013; 15(2):341-51. DOI: 10.1039/c3em00570d
Source: PubMed

ABSTRACT Dermal exposure to sensitizing metals is a serious occupational and public health problem. The usual approach to dermal exposure assessment is to process samples by chemical methods that use reactants to digest the metal particles and quantify the mass. In the case of dermal exposure assessment, these reactants are not representative of the skin surface film liquids and hence, may overestimate bioaccessibility. We hypothesize that the amount and form of sensitizer on a sample that leaches in a biological fluid, as can be estimated using artificial sweat, may be a more relevant metric for assessing health risks. Beryllium metal (Be), nickel metal (Ni), and chromium carbide (Cr3C2) particles were characterized and masses of sensitizing ions were measured using established reactant-assisted digestion procedures and extraction in artificial sweat under physiologically relevant conditions. Chromium ions released into artificial sweat were speciated to understand valence states. The ratios of the fraction of metal dissolved in artificial sweat relative to that dissolved by chemical-specific reactants were 1/2 (Be), 1/108 (Ni), and 1/2500 (Cr). The divalent Be and Ni cations were stable in artificial sweat over time (did not precipitate) whereas hexavalent chromium [Cr(VI)] ions decayed over time. Further analysis using speciated isotope dilution mass spectrometry revealed that the decay of Cr(VI) was accompanied by the formation of Cr(III) in the sweat model. Use of reactant-assisted analytical chemistry to quantify amounts of metal sensitizers on samples could overestimate biologically relevant exposure. In addition to mass, the valence state also influences penetration through the outer stratum corneum of the skin and is an important consideration when assessing exposure to complex sensitizers such as Cr which have multiple valence states with differing penetration efficiencies.


Available from: Laura A Geer, Sep 07, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bioelution assays are fast, simple alternatives to in vivo testing. In this study, the intra- and inter-laboratory variability in bioaccessibility data generated by bioelution tests were evaluated in synthetic fluids relevant to oral, inhalation, and dermal exposure. Using one defined protocol, five laboratories measured metal release from cobalt oxide, cobalt powder, copper concentrate, Inconel alloy, leaded brass alloy, and nickel sulfate hexahydrate. Standard deviations of repeatability (sr) and reproducibility (sR) were used to evaluate the intra- and inter-laboratory variability, respectively. Examination of the sR:sr ratios demonstrated that, while gastric and lysosomal fluids had reasonably good reproducibility, other fluids did not show as good concordance between laboratories. Relative standard deviation (RSD) analysis showed more favorable reproducibility outcomes for some data sets; overall results varied more between- than within-laboratories. RSD analysis of sr showed good within-laboratory variability for all conditions except some metals in interstitial fluid. In general, these findings indicate that absolute bioaccessibility results in some biological fluids may vary between different laboratories. However, for most applications, measures of relative bioaccessibility are needed, diminishing the requirement for high inter-laboratory reproducibility in absolute metal releases. The inter-laboratory exercise suggests that the degrees of freedom within the protocol need to be addressed.
    Regulatory Toxicology and Pharmacology 06/2014; 70(1). DOI:10.1016/j.yrtph.2014.06.021 · 2.14 Impact Factor