Dendritic cell fate is determined by BCL11A

Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 03/2014; 111(11). DOI: 10.1073/pnas.1319228111
Source: PubMed

ABSTRACT The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed "default" pathway for common dendritic cell progenitors.

Download full-text


Available from: Gregory C Ippolito, Jul 04, 2014
40 Reads
  • Source
    • "Bcl11a contributes to DC development through activation of expression of Flt3 in early hematopoietic precursors (Wu et al., 2013). Bcl11a is considered as a pDC-specific marker (Pulford et al., 2006; Marafioti et al., 2008) especially critical for commitment of pDCs since it regulates transcription of E2-2 (also known as transcription factor-4; Tcf4) and other DC differentiation modulators including Id2 and core-binding factor, Runt-domain, α-subunit 2, translocated to, 3 (Cbfa2t3/Mtg16) (Ippolito et al., 2014). In Bcl11a-deficient mice, numbers of pDCs were markedly decreased and development of cDCs was impaired (Wu et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.
    Frontiers in Physiology 07/2014; 5(6):279. DOI:10.3389/fphys.2014.00279 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mononuclear phagocytes are organized in a complex system of ontogenetically and functionally distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic, and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections. We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover, we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey.
    Frontiers in Immunology 06/2015; 6:299. DOI:10.3389/fimmu.2015.00299
  • [Show abstract] [Hide abstract]
    ABSTRACT: A transition from fetal hemoglobin (HbF) to adult hemoglobin (HbA) normally occurs within a few months after birth. Increased production of HbF after this period of infancy ameliorates clinical symptoms of the major disorders of adult β-hemoglobin: β-thalassemia and sickle cell disease. The transcription factor BCL11A silences HbF and has been an attractive therapeutic target for increasing HbF levels; however, it is not clear to what extent BCL11A inhibits HbF production or mediates other developmental functions in humans. Here, we identified and characterized 3 patients with rare microdeletions of 2p15-p16.1 who presented with an autism spectrum disorder and developmental delay. Moreover, these patients all exhibited substantial persistence of HbF but otherwise retained apparently normal hematologic and immunologic function. Of the genes within 2p15-p16.1, only BCL11A was commonly deleted in all of the patients. Evaluation of gene expression data sets from developing and adult human brains revealed that BCL11A expression patterns are similar to other genes associated with neurodevelopmental disorders. Additionally, common SNPs within the second intron of BCL11A are strongly associated with schizophrenia. Together, the study of these rare patients and orthogonal genetic data demonstrates that BCL11A plays a central role in silencing HbF in humans and implicates BCL11A as an important factor for neurodevelopment.
    The Journal of clinical investigation 05/2015; 125(6). DOI:10.1172/JCI81163 · 13.22 Impact Factor
Show more