Article

T Cell Receptor Signaling Can Directly Enhance the Avidity of CD28 Ligand Binding

University of Iowa, United States of America
PLoS ONE (Impact Factor: 3.53). 02/2014; 9(2):e89263. DOI: 10.1371/journal.pone.0089263
Source: PubMed

ABSTRACT T cell activation takes place in the context of a spatial and kinetic reorganization of cell surface proteins and signaling molecules at the contact site with an antigen presenting cell, termed the immunological synapse. Coordination of the activation, recruitment, and signaling from T cell receptor (TCR) in conjunction with adhesion and costimulatory receptors regulates both the initiation and duration of signaling that is required for T cell activation. The costimulatory receptor, CD28, is an essential signaling molecule that determines the quality and quantity of T cell immune responses. Although the functional consequences of CD28 engagement are well described, the molecular mechanisms that regulate CD28 function are largely unknown. Using a micropipet adhesion frequency assay, we show that TCR signaling enhances the direct binding between CD28 and its ligand, CD80. Although CD28 is expressed as a homodimer, soluble recombinant CD28 can only bind ligand monovalently. Our data suggest that the increase in CD28-CD28 binding is mediated through a change in CD28 valency. Molecular dynamic simulations and in vitro mutagenesis indicate that mutations at the base of the CD28 homodimer interface, distal to the ligand-binding site, can induce a change in the orientation of the dimer that allows for bivalent ligand binding. When expressed in T cells, this mutation allows for high avidity CD28-CD80 interactions without TCR signaling. Molecular dynamic simulations also suggest that wild type CD28 can stably adopt a bivalent conformation. These results support a model whereby inside-out signaling from the TCR can enhance CD28 ligand interactions by inducing a change in the CD28 dimer interface to allow for bivalent ligand binding and ultimately the transduction of CD28 costimulatory signals that are required for T cell activation.

0 Followers
 · 
41 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery that integrins at the surface of lymphocytes undergo dynamic changes in their adhesive activity after stimulation through the T-cell receptor or stimulation with chemokines, intensive research has been carried out in an attempt to clarify the signalling events that lead to the activation of integrins. Whereas structural studies have provided us with a vivid picture of the conformational flexibility of integrins, the signalling pathways that regulate these conformational changes (known as inside-out signalling) have been elusive. However, as I discuss here, recent studies have provided new insight into the pathways that control the regulation of integrin activity and the coordination of complex cellular functions, such as the homing of lymphocytes and the formation of an immunological synapse.
    Nature reviews. Immunology 08/2005; 5(7):546-59. DOI:10.1038/nri1646 · 33.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ff94 force field that is commonly associated with the Amber simulation package is one of the most widely used parameter sets for biomolecular simulation. After a decade of extensive use and testing, limitations in this force field, such as over-stabilization of alpha-helices, were reported by us and other researchers. This led to a number of attempts to improve these parameters, resulting in a variety of "Amber" force fields and significant difficulty in determining which should be used for a particular application. We show that several of these continue to suffer from inadequate balance between different secondary structure elements. In addition, the approach used in most of these studies neglected to account for the existence in Amber of two sets of backbone phi/psi dihedral terms. This led to parameter sets that provide unreasonable conformational preferences for glycine. We report here an effort to improve the phi/psi dihedral terms in the ff99 energy function. Dihedral term parameters are based on fitting the energies of multiple conformations of glycine and alanine tetrapeptides from high level ab initio quantum mechanical calculations. The new parameters for backbone dihedrals replace those in the existing ff99 force field. This parameter set, which we denote ff99SB, achieves a better balance of secondary structure elements as judged by improved distribution of backbone dihedrals for glycine and alanine with respect to PDB survey data. It also accomplishes improved agreement with published experimental data for conformational preferences of short alanine peptides and better accord with experimental NMR relaxation data of test protein systems.
    Proteins Structure Function and Bioinformatics 11/2006; 65(3):712-25. DOI:10.1002/prot.21123 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell activation is mediated by microclusters (MCs) containing T cell receptors (TCRs), kinases, and adaptors. Although TCR MCs translocate to form a central supramolecular activation cluster (cSMAC) of the immunological synapse at the interface of a T cell and an antigen-presenting cell, the role of MC translocation in T cell signaling remains unclear. Here, we found that the accumulation of MCs at cSMAC was important for T cell costimulation. Costimulatory receptor CD28 was initially recruited coordinately with TCR to MCs, and its signals were mediated through the assembly with the kinase PKCtheta. The accumulation of MCs at the cSMAC was accompanied by the segregation of CD28 from the TCR, which resulted in the translocation of both CD28 and PKCtheta to a spatially unique subregion of cSMAC. Thus, costimulation is mediated by the generation of a unique costimulatory compartment in the cSMAC via the dynamic regulation of MC translocation.
    Immunity 11/2008; 29(4):589-601. DOI:10.1016/j.immuni.2008.08.011 · 19.75 Impact Factor

Full-text (3 Sources)

Download
10 Downloads
Available from
Jan 13, 2015