G9a influences neuronal subtype specification in striatum.

Nature Neuroscience (Impact Factor: 14.98). 03/2014; DOI: 10.1038/nn.3670
Source: PubMed

ABSTRACT Cocaine-mediated repression of the histone methyltransferase (HMT) G9a has recently been implicated in transcriptional, morphological and behavioral responses to chronic cocaine administration. Here, using a ribosomal affinity purification approach, we found that G9a repression by cocaine occurred in both Drd1-expressing (striatonigral) and Drd2-expressing (striatopallidal) medium spiny neurons. Conditional knockout and overexpression of G9a within these distinct cell types, however, revealed divergent behavioral phenotypes in response to repeated cocaine treatment. Our studies further indicated that such developmental deletion of G9a selectively in Drd2 neurons resulted in the unsilencing of transcriptional programs normally specific to striatonigral neurons and in the acquisition of Drd1-associated projection and electrophysiological properties. This partial striatopallidal to striatonigral 'switching' phenotype in mice indicates a new role for G9a in contributing to neuronal subtype identity and suggests a critical function for cell type-specific histone methylation patterns in the regulation of behavioral responses to environmental stimuli.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug addiction involves long-term behavioral abnormalities and gene expression changes throughout the mesolimbic dopamine system. Epigenetic mechanisms establish/maintain alterations in gene expression in the brain, providing the impetus for investigations characterizing how epigenetic processes mediate the effects of drugs of abuse. This review focuses on evidence that epigenetic events, specifically histone modifications, regulate gene expression changes throughout the reward circuitry. Drugs of abuse induce changes in histone modifications throughout the reward circuitry by altering histone-modifying enzymes, manipulation of which reveals a role for histone modification in addiction-related behaviors. There is a complex interplay between these enzymes, resulting in a histone signature of the addicted phenotype. Insights gained from these studies are key to identifying novel targets for diagnosis and therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Current Opinion in Neurobiology 12/2014; 30C:112-121. DOI:10.1016/j.conb.2014.11.002 · 6.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the cellular and molecular mechanisms that specify cell lineages throughout development, and that maintain tissue homeostasis during adulthood, is paramount towards our understanding of why we age or develop pathologies such as cancer. Epigenetic mechanisms ensure that genetically identical cells acquire different fates during embryonic development, and are therefore essential for the proper progression of development. How they do so is still a matter of intense investigation, but there is sufficient evidence indicating that they act in a concerted manner with inductive signals and tissue-specific transcription factors to promote and stabilize fate changes along the three germ layers during development. In consequence, it is generally hypothesized that epigenetic mechanisms are also required for the continuous maintenance of cell fate during adulthood. However, in vivo models in which different epigenetic factors have been depleted in different tissues do not show overt changes in cell lineage, thus not strongly supporting this view. Instead, the function of some of these factors appears to be primarily associated to tissue functionality, and a strong causal relationship has been established between their misregulation and a diseased state. In this review, we summarize our current knowledge of the role of epigenetic factors in adult stem cell function and tissue homeostasis.
    FEBS Journal 07/2014; DOI:10.1111/febs.12946 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine addiction is characterized by compulsive drug use despite adverse consequences and high rate of relapse during periods of abstinence. Increasing consensus suggests that addiction to drugs of abuse usurps learning and memory mechanisms normally related to natural rewards, ultimately producing long-lasting neuroadaptations in the mesocorticolimbic system. This system, formed in part by the ventral tegmental area and nucleus accumbens (NAc), has a central role in the development and expression of addictive behaviors. In addition to a broad spectrum of changes that affect morphology and function of NAc excitatory circuits in cocaine-treated animals, impaired N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity is a typical feature. D-serine, a D-amino acid that has been found at high levels in mammalian brain, binds with high affinity the co-agonist site of NMDAR and mediates, along with glutamate, several important processes including synaptic plasticity. Here we review recent literature focusing on cocaine-induced impairment in synaptic plasticity mechanisms in the NAc and on the fundamental role of D-serine as co-agonist of NMDAR in functional and dysfunctional synaptic plasticity within this nucleus. The emerging picture is that reduced D-serine levels play a crucial role in synaptic plasticity relevant to cocaine addiction. This finding opens new perspectives for therapeutic approaches to treat this addictive state.
    Frontiers in Synaptic Neuroscience 07/2014; 6:16. DOI:10.3389/fnsyn.2014.00016

Full-text (2 Sources)

Available from
Nov 5, 2014