Structural Basis for the Prion-Like Mavs Filaments in Antiviral Innate Immunity

eLife Sciences (Impact Factor: 8.52). 02/2014; 3(2):e01489. DOI: 10.7554/eLife.01489
Source: PubMed

ABSTRACT Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI:

  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous instances can be seen in evolution in which protein quaternary structures have diverged while the sequences of the building blocks have remained fairly conserved. However, the path through which such divergence has taken place is usually not known. We have designed two synthetic 29-residue α-helical peptides, based on the coiled-coil structural motif, that spontaneously self-assemble into helical nanotubes in vitro. Using electron cryomicroscopy with a newly available direct electron detection capability, we can achieve near-atomic resolution of these thin structures. We show how conservative changes of only one or two amino acids result in dramatic changes in quaternary structure, in which the assemblies can be switched between two very different forms. This system provides a framework for understanding how small sequence changes in evolution can translate into very large changes in supramolecular structure, a phenomenon that may have significant implications for the de novo design of synthetic peptide assemblies. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Structure 01/2015; 23(2). DOI:10.1016/j.str.2014.12.008 · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Successful clearance of a microbial infection depends on the concerted action of both the innate and adaptive arms of the immune system. Accurate recognition of an invading pathogen is the first and most crucial step in eliciting effective antimicrobial defense mechanisms. In recent years, remarkable progress has been made towards understanding the molecular details of how the innate immune system recognizes microbial signatures, commonly called pathogen-associated molecular patterns (PAMPs). For viral pathogens, nucleic acids-both viral genomes and viral replication products-represent a major class of PAMPs that trigger antiviral host responses via activation of germline-encoded innate immune receptors. Here we summarize recent advances in intracellular innate sensing mechanisms of viral RNA and DNA. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current opinion in microbiology 03/2015; 26:1-9. DOI:10.1016/j.mib.2015.03.001 · 7.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The oligoadenylate synthetase (OAS) enzymes are cytoplasmic dsRNA sensors belonging to the antiviral innate immune system. Upon binding to viral dsRNA, the OAS enzymes synthesize 2'-5' linked oligoadenylates (2-5As) that initiate an RNA decay pathway to impair viral replication. The human OAS-like (OASL) protein, however, does not harbor the catalytic activity required for synthesizing 2-5As and differs from the other human OAS family members by having two C-terminal ubiquitin-like domains. In spite of its lack of enzymatic activity, human OASL possesses antiviral activity. It was recently demonstrated that the ubiquitin-like domains of OASL could substitute for K63-linked poly-ubiquitin and interact with the CARDs of RIG-I and thereby enhance RIG-I signaling. However, the role of the OAS-like domain of OASL remains unclear. Here we present the crystal structure of the OAS-like domain, which shows a striking similarity with activated OAS1. Furthermore, the structure of the OAS-like domain shows that OASL has a dsRNA binding groove. We demonstrate that the OAS-like domain can bind dsRNA and that mutating key residues in the dsRNA binding site is detrimental to the RIG-I signaling enhancement. Hence, binding to dsRNA is an important feature of OASL that is required for enhancing RIG-I signaling. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 04/2015; DOI:10.1093/nar/gkv389 · 8.81 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014