Role of emerging neuroimaging modalities in patients with cognitive impairment: A review from the Canadian Consensus Conference on the Diagnosis and Treatment of Dementia 2012

Alzheimer's Research and Therapy (Impact Factor: 3.98). 07/2013; 5(Suppl 1):S4. DOI: 10.1186/alzrt200
Source: PubMed


The Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (CCCDTD4) was held 3 to 4 May 2012 in Montreal, Quebec, Canada. A group of neuroimaging experts were assigned the task of reviewing and summarizing the literature on clinical and research applications of different neuroimaging modalities in cognitive disorders. This paper summarizes the literature and recommendations made to the conference regarding the role of several emerging neuroimaging modalities in cognitive disorders. Functional magnetic resonance imaging (MRI), magnetic resonance spectroscopy, and diffusion tensor imaging are discussed in detail within this paper. Other emergent neuroimaging modalities such as positron emission tomography with novel ligands, high-field MRI, arterial spin labeling MRI and noncerebral blood flow single-photon emission computerized tomography are only discussed briefly. Neuroimaging modalities that were recommended at the CCCDTD4 for both clinical and research applications such as amyloid and flurodeoxyglucose positron emission tomography, computerized tomography and structural MRI are discussed in a separate paper by the same authors. A literature search was conducted using the PubMed database including articles in English that involved human subjects and covered the period from the last CCCDTD publication (CCCDTD3; January 2006) until April 2012. Search terms included the name of the specific modality, dementia, Alzheimer's disease, and mild cognitive impairment. A separate search used the same parameters but was restricted to review articles to identify recent evidence-based reviews. Case studies and small case series were not included. Papers representing current evidence were selected, reviewed, and summarized, and the results were presented at the CCCDTD4 meeting with recommendations regarding the utility of various neuroimaging modalities in cognitive disorders. The evidence was graded according to the Oxford Centre for Evidence Based Medicine guidelines. Due to the limitations of current evidence, the neuroimaging modalities discussed in this paper were not recommended for clinical investigation of patients presenting with cognitive impairment. However, in the research setting, each modality provides a unique contribution to the understanding of basic mechanisms and neuropathological markers of cognitive disorders, to the identification of markers for early detection and for the risk of conversion to dementia in the at-risk populations, to the differentiation between different types of cognitive disorders, and to the identification of treatment targets and indicators of treatment response. In conclusion, for all of the neuroimaging modalities discussed in this paper, further studies are needed to establish diagnostic utility such as validity, reliability, and predictive and prognostic value. More multicenter studies are therefore needed with standardized image acquisition, experimental protocols, definition of the clinical population studied, larger numbers of participants, and longer duration of follow-up to allow generalizability of the results to the individual patient.

1 Follower
13 Reads
  • Source
    • "Memory training also increases the thickness of the right fusiform and lateral orbitofrontal cortex, a phenomenon that has been positively correlated with enhanced memory performances (Engvig et al., 2010). Unfortunately, only few fMRI studies have unveil functional connectivity effects associated with cognitive intervention (Burhan et al., 2012; Engvig et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia.
    Frontiers in Systems Neuroscience 09/2014; 8:153. DOI:10.3389/fnsys.2014.00153
  • Source
    Alzheimer's Research and Therapy 07/2013; 5(Suppl 1):S1. DOI:10.1186/alzrt196 · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent epidemiological and clinico-pathological data indicate considerable overlap between cerebrovascular disease (CVD) and Alzheimer's disease (AD) and suggest additive or synergistic effects of both pathologies on cognitive decline. The most frequent vascular pathologies in the aging brain and in AD are cerebral amyloid angiopathy and small vessel disease. Up to 84% of aged subjects show morphological substrates of CVD in addition to AD pathology. AD brains with minor CVD, similar to pure vascular dementia, show subcortical vascular lesions in about two-thirds, while in mixed type dementia (AD plus vascular dementia), multiple larger infarcts are more frequent. Small infarcts in patients with full-blown AD have no impact on cognitive decline but are overwhelmed by the severity of Alzheimer pathology, while in early stages of AD, cerebrovascular lesions may influence and promote cognitive impairment, lowering the threshold for clinically overt dementia. Further studies are warranted to elucidate the many hitherto unanswered questions regarding the overlap between CVD and AD as well as the impact of both CVD and AD pathologies on the development and progression of dementia.
    BMC Medicine 12/2014; 12(1):206. DOI:10.1186/s12916-014-0206-2 · 7.25 Impact Factor

Preview (5 Sources)

13 Reads
Available from