A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways

Cell Death & Disease (Impact Factor: 5.01). 02/2014; 5(2):e1079. DOI: 10.1038/cddis.2014.54
Source: PubMed


Neuroblastoma (NB) is the most common extracranial neoplasm in children. In NB, loss of p53 function is largely due to cytoplasmic sequestration rather than mutation. Ubiquitin-conjugating enzyme E2 N (UBE2N), also known as Ubc13, is an E2 ubiquitin-conjugating enzyme that promotes formation of monomeric p53 that results in its cytoplasmic translocation and subsequent loss of function. Therefore, inhibition of UBE2N may reactivate p53 by promoting its nuclear accumulation. Here, we show that NSC697923, a novel UBE2N inhibitor, exhibits potent cytotoxicity in a panel of NB cell lines evidenced by its ability to induce apoptosis. In p53 wild-type NB cells, NSC697923 induced nuclear accumulation of p53, which led to its increased transcriptional activity and tumor suppressor function. Interestingly, in p53 mutant NB cells, NSC697923 induced cell death by activating JNK pathway. This effect was reversible by blocking JNK activity with its selective inhibitor, SP600125. More importantly, NSC697923 impeded cell growth of chemoresistant LA-N-6 NB cell line in a manner greater than conventional chemotherapy drugs doxorubicin and etoposide. NSC697923 also revealed in vivo antitumor efficacy in NB orthotopic xenografts. Taken together, our results suggest that UBE2N is a potential therapeutic target in NB and provide a basis for the rational use of UBE2N inhibitors like NSC697923 as a novel treatment option for NB patients.

Download full-text


Available from: Jed G Nuchtern, Mar 11, 2014
1 Follower
34 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-risk neuroblastoma often develops resistance to high-dose chemotherapy. The mTOR signaling cascade is frequently deregulated in human cancers and targeting mTOR signaling sensitizes many cancer types to chemotherapy. Here, using a panel of neuroblastoma cell lines, we found that the mTOR inhibitor INK128 showed inhibitory effects on both anchorage-dependent and independent growth of neuroblastoma cells and significantly enhanced the cytotoxic effects of doxorubicin (Dox) on these cell lines. Treatment of neuroblastoma cells with INK128 blocked the activation of downstream mTOR signaling and enhanced Dox-induced apoptosis. Moreover, INK128 was able to overcome the established chemoresistance in the LA-N-6 cell line. Using an orthotopic neuroblastoma mouse model, we found that INK128 significantly inhibited tumor growth in vivo. In conclusion, we have shown that INK128-mediated mTOR inhibition possessed substantial antitumor activity and could significantly increase the sensitivity of neuroblastoma cells to Dox therapy. Taken together, our results indicate that using INK128 can provide additional efficacy to current chemotherapeutic regimens and represent a new paradigm in restoring drug sensitivity in neuroblastoma.
    APOPTOSIS 11/2014; 20(1). DOI:10.1007/s10495-014-1066-0 · 3.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 5-FU is an anticancer drug that is widely used to treat cancers, including colorectal cancer (CRC); however, chemoresistance to 5-FU remains an important problem to be resolved. The role of microRNAs (miRs) in chemosensitivity has recently been studied in the development of therapeutic strategies to overcome drug resistance. Here, we focused on miR-96, which has been reported to demonstrate chemosensitivity. We investigated whether 5-FU sensitivity may be modulated by miR-96 in monolayer cells and whether this relationship also applies for drug resistance in 3D tumor spheroids (TSs). When the level of miR-96 increased, the expression of the anti-apoptotic regulator XIAP and p53 stability regulator UBE2N decreased, resulting in increased apoptosis and growth inhibition following 5-FU exposure. Transfection of miR-96 inhibitors resulted in an overexpression of XIAP and UBE2N, yet only minimal change was induced in apoptosis. Nonetheless, luciferase assay failed to show direct interactions between miR-96 and these genes. In TSs, 5-FU resistance corresponded to a significantly lower level of miR-96, however only XIAP, not UBE2N, was up-regulated demonstrating partial agreement with the 2D condition regarding target expression. Overall, these results suggest that miR-96 may modulate 5-FU sensitivity in CRC cells by promoting apoptosis; however, differential expression of target genes in TSs warrants further studies on the 5-FU resistance mechanism under 3D conditions.
    Archives of Pharmacal Research 12/2014; 38(2). DOI:10.1007/s12272-014-0528-9 · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The key to a more effective diagnosis, prognosis, and therapeutic management of prostate cancer (PCa) could lie in the direct analysis of cancer tissue. In this study, by comparative proteomics analysis of PCa and benign prostate hyperplasia (BPH) tissues we attempted to elucidate the proteins and regulatory pathways involved in this disease. The samples used in this study were fresh surgical tissues with clinically and histologically confirmed PCa (n = 19) and BPH (n = 33). We used two dimensional difference in gel electrophoresis (2D DIGE) coupled with mass spectrometry (MS) and bioinformatics analysis. Thirty-nine spots with statistically significant 1.8-fold variation or more in abundance, corresponding to 28 proteins were identified. The IPA analysis pointed out to 3 possible networks regulated within MAPK, ERK, TGFB1, and ubiquitin pathways. Thirteen of the identified proteins, namely, constituents of the intermediate filaments (KRT8, KRT18, DES), potential tumor suppressors (ARHGAP1, AZGP1, GSTM2, and MFAP4), transport and membrane organization proteins (FABP5, GC, and EHD2), chaperons (FKBP4 and HSPD1) and known cancer marker (NME1) have been associated with prostate and other cancers by numerous proteomics, genomics or functional studies. We evidenced for the first time the dysregulation of 9 proteins (CSNK1A1, ARID5B, LYPLA1, PSMB6, RABEP1, TALDO1, UBE2N, PPP1CB, and SERPINB1) that may have role in PCa. The UBE2N, PSMB6, and PPP1CB, involved in cell cycle regulation and progression were evaluated by Western blot analysis which confirmed significantly higher abundances of UBE2N and PSMB6 and significantly lower abundance of PPP1CB in PCa. In addition to the identification of substantial number of proteins with known association with PCa, the proteomic approach in this study revealed proteins not previously clearly related to PCa, providing a starting point for further elucidation of their function in disease initiation and progression. Prostate © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    The Prostate 06/2015; DOI:10.1002/pros.23034 · 3.57 Impact Factor
Show more