Article

Identification and Characterization of a Proteolytically Primed Form of the Murine Coronavirus Spike Proteins after Fusion with the Target Cell.

Journal of Virology (Impact Factor: 4.65). 02/2014; DOI: 10.1128/JVI.03451-13
Source: PubMed

ABSTRACT Enveloped viruses carry highly specialized glycoproteins that catalyze membrane fusion under strict spatial and temporal control. To prevent premature activation after biosynthesis, viral class I fusion proteins adopt a locked conformation and require proteolytic cleavage to render them fusion-ready. This priming step may occur during virus exit from the infected cell, in the extracellular milieu or during entry at or in the next target cell. Proteolytic processing of coronavirus spike (S) fusion proteins during virus entry has been suggested but not yet formally demonstrated, while the nature and functionality of the resulting subunit is still unclear. We used the prototype coronavirus - mouse hepatitis virus (MHV) - to develop a conditional biotinylation assay that enables the specific identification and biochemical characterization of viral S proteins on virions that mediated membrane fusion with the target cell. We demonstrate that MHV S proteins are indeed cleaved upon virus endocytosis and we identified a novel processing product S2* with characteristics of a fusion-active subunit. The precise cleavage site and the enzymes involved remain to be elucidated.
Virus entry determines the tropism and is a crucial step in the virus life cycle. We developed an approach to characterize structural components of virus particles after entering new target cells. A prototype coronavirus was used to illustrate how the virus fusion machinery can be controlled.

1 Follower
 · 
39 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.
    PLoS Pathogens 11/2014; 10(11):e1004502. DOI:10.1371/journal.ppat.1004502 · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Feline coronavirus (FCoV) infections are endemic amongst cats worldwide. The majority of infections are asymptomatic, or result only in mild enteric disease. However, approximately 5% of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs; three from fecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of eight weeks at a single-site cat rescue and rehoming center in the UK. We found amino acid differences are located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminate between the genomes derived from the fecal samples and the genomes derived from tissue lesion samples. In this study, two amino acid differences fully discriminate the two classes of genomes; these are both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP.
    Journal of General Virology 02/2015; DOI:10.1099/vir.0.000084 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. Copyright © 2014. Published by Elsevier B.V.
    Virus Research 11/2014; DOI:10.1016/j.virusres.2014.11.021 · 2.83 Impact Factor