Article

Identification and Characterization of a Proteolytically Primed Form of the Murine Coronavirus Spike Proteins after Fusion with the Target Cell.

Journal of Virology (Impact Factor: 4.65). 02/2014; DOI: 10.1128/JVI.03451-13
Source: PubMed

ABSTRACT Enveloped viruses carry highly specialized glycoproteins that catalyze membrane fusion under strict spatial and temporal control. To prevent premature activation after biosynthesis, viral class I fusion proteins adopt a locked conformation and require proteolytic cleavage to render them fusion-ready. This priming step may occur during virus exit from the infected cell, in the extracellular milieu or during entry at or in the next target cell. Proteolytic processing of coronavirus spike (S) fusion proteins during virus entry has been suggested but not yet formally demonstrated, while the nature and functionality of the resulting subunit is still unclear. We used the prototype coronavirus - mouse hepatitis virus (MHV) - to develop a conditional biotinylation assay that enables the specific identification and biochemical characterization of viral S proteins on virions that mediated membrane fusion with the target cell. We demonstrate that MHV S proteins are indeed cleaved upon virus endocytosis and we identified a novel processing product S2* with characteristics of a fusion-active subunit. The precise cleavage site and the enzymes involved remain to be elucidated.
Virus entry determines the tropism and is a crucial step in the virus life cycle. We developed an approach to characterize structural components of virus particles after entering new target cells. A prototype coronavirus was used to illustrate how the virus fusion machinery can be controlled.

1 Follower
 · 
46 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus, is a causative agent of porcine enteric disease characterized by acute watery diarrhea and dehydration in sucking piglet. Similar to other coronaviruses, PEDV spike protein mediates its cell entry by binding to cellular receptors and inducing membrane fusion between viral envelopes and cellular membranes. However, the entry mechanism of PEDV is not studied. Here, we determined the entry mechanism of PEDV into Vero cells. Our data confirmed that PEDV entry followed clathrin-mediated endocytosis independence of caveolae-coated pit assembly. The internalized PEDV was co-localized with the clathrin-mediated endocytic marker, but not with the caveolae-mediated endocytic marker. In addition, cells treated with lysosomotropic agents and serine protease inhibitors were resistant to PEDV. Our data revealed that PEDV entry followed clathrin-mediated endocytosis and was dependent on a low pH and serine proteolysis for successful entry into cells.
    Virus Research 07/2014; 191. DOI:10.1016/j.virusres.2014.07.022
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Canine enteric coronavirus (CCoV) is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs) that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host.
    Viruses 08/2014; 6(8):3363-3376. DOI:10.3390/v6083363
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2' position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2' site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus.
    Proceedings of the National Academy of Sciences 10/2014; DOI:10.1073/pnas.1407087111