Article

High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk

BMC Microbiology (Impact Factor: 2.98). 02/2014; 14(1):41. DOI: 10.1186/1471-2180-14-41
Source: PubMed

ABSTRACT Coxiella burnetii causes Q fever in humans and Coxiellosis in animals; symptoms range from general malaise to fever, pneumonia, endocarditis and death. Livestock are a significant source of human infection as they shed C. burnetii cells in birth tissues, milk, urine and feces. Although prevalence of C. burnetii is high, few Q fever cases are reported in the U.S. and we have a limited understanding of their connectedness due to difficulties in genotyping. Here, we develop canonical SNP genotyping assays to evaluate spatial and temporal relationships among C. burnetii environmental samples and compare them across studies. Given the genotypic diversity of historical collections, we hypothesized that the current enzootic of Coxiellosis is caused by multiple circulating genotypes. We collected A) 23 milk samples from a single bovine herd, B) 134 commercial bovine and caprine milk samples from across the U.S., and C) 400 bovine and caprine samples from six milk processing plants over three years.
We detected C. burnetii DNA in 96% of samples with no variance over time. We genotyped 88.5% of positive samples; bovine milk contained only a single genotype (ST20) and caprine milk was dominated by a second type (mostly ST8).
The high prevalence and lack of genotypic diversity is consistent with a model of rapid spread and persistence. The segregation of genotypes between host species is indicative of species-specific adaptations or dissemination barriers and may offer insights into the relative lack of human cases and characterizing genotypes.

0 Followers
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coxiella burnetii, the etiologic agent of Q fever, is a highly infectious zoonotic bacterium. Genetic information about the strains of this worldwide distributed agent circulating on the African continent is limited. The aim of the present study was the genetic characterization of C. burnetii DNA samples detected in ticks collected from Ethiopian cattle and their comparison with other genotypes found previously in other parts of the world. A total of 296 tick samples were screened by real-time PCR targeting the IS1111 region of C. burnetii genome and from the 32 positive samples, 8 cases with sufficient C. burnetii DNA load (Amblyomma cohaerens, n = 6; A. variegatum, n = 2) were characterized by multispacer sequence typing (MST) and multiple-locus variable-number tandem repeat analysis (MLVA). One novel sequence type (ST), the proposed ST52, was identified by MST. The MLVA-6 discriminated the proposed ST52 into two newly identified MLVA genotypes: type 24 or AH was detected in both Amblyomma species while type 26 or AI was found only in A. cohaerens. Both the MST and MLVA genotypes of the present work are closely related to previously described genotypes found primarily in cattle samples from different parts of the globe. This finding is congruent with the source hosts of the analyzed Ethiopian ticks, as these were also collected from cattle. The present study provides genotype information of C. burnetii from this seldom studied East-African region as well as further evidence for the presumed host-specific adaptation of this agent.
    PLoS ONE 11/2014; 9(11):e113213. DOI:10.1371/journal.pone.0113213 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Q fever is an important zoonotic disease which has been recently diagnosed, mainly in sheep and goats, in Portugal. The aim of the present study was to determine the prevalence of bovine Coxiella burnetii antibodies in dairy farms from the northwest of Portugal. Bulk tank milk samples were randomly obtained, on November 2013, from 90 dairy farms and assayed using an ELISA kit. The apparent prevalence was 61.1 % (95 % C.I. from 50.8 to 70.5 %). The proportion of negative and intermediate (inconclusive) herds was 34.5 % (25.5 to 44.7 %) and 4.4 % (1.7 to 10.9 %), respectively. In conclusion, a high level of exposure to Coxiella burnetii was observed in Portuguese dairy cattle herds, highlighting the needs to better understand the epidemiology of Q fever in Portugal by the implementation of a monitoring program based on harmonized serologic and molecular methodologies and elucidation of the infection status of the herds.
    Tropical Animal Health and Production 10/2014; 47(1). DOI:10.1007/s11250-014-0679-1 · 0.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Genotyping of bacteria is critical for diagnosis, treatment, and epidemiological surveillance. Coxiella burnetii, the etiological agent of Q fever, has been recognized to have a potential for bioterrorism purposes. Because few serosurveys have been conducted in Italy, there is still limited information about the distribution of this pathogen in natural conditions. In this paper, we describe the genotyping of C. burnetii strains by multispacer sequence typing (MST) detected in cattle and goat farms in the Abruzzi region of Italy. Biological samples (milk, aborted fetus) positive for C. burnetii DNA were sequenced in the spacer regions and compared with those already publicly available ( http://ifr48.timone.univ-mrs.fr/MST_Coxiella/mst/group_detail ). The MST profile of C. burnetii detected in milk samples demonstrated the presence of a new allele, whereas the C. burnetii spacer sequences from fetus and milk goat samples displayed a new allelic combination. The results suggest the circulation of novel genotypes of C. burnetii in Italy.
    Vector borne and zoonotic diseases (Larchmont, N.Y.) 10/2014; 14(10):710-5. DOI:10.1089/vbz.2014.1587 · 2.53 Impact Factor

Full-text (3 Sources)

Download
25 Downloads
Available from
Jun 3, 2014