Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis

Clinical & Translational Immunology 11/2013; 2(11). DOI: 10.1038/cti.2013.11

ABSTRACT Multiple sclerosis (MS) is an autoimmune disease of unknown etiology. Infectious agents have been suggested to have a role as environmental factors in MS, but this concept remains controversial. Recently, gastrointestinal commensal bacteria have been implicated in the pathogenesis of autoimmune diseases, but mechanisms underlying the relationship of human systemic autoimmunity with the commensal microbiome have yet to be identified. Consistent with the lack of understanding of pathogenic mechanisms and relevant environmental factors in MS, no blood biomarkers have been identified that distinguish MS patients from healthy individuals. We recently identified a unique gastrointestinal and oral bacteria-derived lipodipeptide, Lipid 654, which is produced by commensal bacteria and functions as a human and mouse Toll-like receptor 2 ligand. Using multiple-reaction-monitoring mass spectrometry, a critical approach in targeted lipidomics, we now report that Lipid 654 can be recovered in the serum of healthy individuals. Most interestingly, we find that Lipid 654 is expressed at significantly lower levels in the serum of patients with MS compared with both healthy individuals and patients with Alzheimer’s disease. These results thus identify for the first time a potential mechanism relating the gastrointestinal and oral commensal microbiome to a human systemic autoimmune disease. In addition, these results also identify a potential etiologic environmental factor and novel clinically relevant serum biomarker for MS.

Download full-text


Available from: Xudong Yao, Aug 15, 2014
40 Reads
  • Source
    • "Although there is little mechanistic understanding about the role of the microbiome on inflammatory and neurological disease, some studies have found specific markers (microbes and metabolites) associated with both gut and oral microbiomes. These markers have been shown to enter the systemic circulation and elicit systemic immune responses, thus serving as specific biomarkers of disease (Clark et al., 2013; Farrokhi et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of the human microbiome in schizophrenia remains largely unexplored. The microbiome has been shown to alter brain development and modulate behavior and cognition in animals through gut-brain connections, and research in humans suggests that it may be a modulating factor in many disorders. This study reports findings from a shotgun metagenomic analysis of the oropharyngeal microbiome in 16 individuals with schizophrenia and 16 controls. High-level differences were evident at both the phylum and genus levels, with Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria dominating both schizophrenia patients and controls, and Ascomycota being more abundant in schizophrenia patients than controls. Controls were richer in species but less even in their distributions, i.e., dominated by fewer species, as opposed to schizophrenia patients. Lactic acid bacteria were relatively more abundant in schizophrenia, including species of textitLactobacilli and textitBifidobacterium, which have been shown to modulate chronic inflammation. We also found textitEubacterium halii, a lactate-utilizing species. Functionally, the microbiome of schizophrenia patients was characterized by an increased number of metabolic pathways related to metabolite transport systems including siderophores, glutamate, and vitamin B12. In contrast, carbohydrate and lipid pathways and energy metabolism were abundant in controls. These findings suggest that the oropharyngeal microbiome in individuals with schizophrenia is significantly different compared to controls, and that particular microbial species and metabolic pathways differentiate both groups. Confirmation of these findings in larger and more diverse samples, e.g., gut microbiome, will contribute to elucidating potential links between schizophrenia and the human microbiota.
    PeerJ 08/2015; 3(8):e1140. DOI:10.7717/peerj.1140 · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Not much is known about the initial events leading to the development of the central nervous system (CNS)-specific autoimmune disorder Multiple Sclerosis (MS). Environmental factors are suspected to trigger the pathogenic events in people with genetic disease susceptibility. Historically, many infectious microbes were linked to MS, but no infection has ever been demonstrated to be the cause of the disease. Recent emerging evidence from animal models of MS suggests a causal link with resident commensal bacteria. Microbial organisms may trigger the activation of CNS-specific, auto-aggressive lymphocytes either through molecular mimicry or via bystander activation. In addition, several gut microbial metabolites and bacterial products may interact with the immune system to modulate CNS autoimmunity.
    FEBS letters 04/2014; 588(22). DOI:10.1016/j.febslet.2014.04.007 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of multiple sclerosis (MS), an autoimmune disease affecting the brain and spinal cord, remains poorly understood. Patients with MS typically present with recurrent episodes of neurological dysfunctions such as blindness, paresis, and sensory disturbances. Studies on experimental autoimmune encephalomyelitis (EAE) animal models have led to a number of testable hypotheses including a hypothetical role of altered gut microbiota in the development of MS. To investigate whether gut microbiota in patients with MS is altered, we compared the gut microbiota of 20 Japanese patients with relapsing-remitting (RR) MS (MS20) with that of 40 healthy Japanese subjects (HC40) and an additional 18 healthy subjects (HC18). All the HC18 subjects repeatedly provided fecal samples over the course of months (158 samples in total). Analysis of the bacterial 16S ribosomal RNA (rRNA) gene by using a high-throughput culture-independent pyrosequencing method provided evidence of a moderate dysbiosis in the structure of gut microbiota in patients with MS. Furthermore, we found 21 species that showed significant differences in relative abundance between the MS20 and HC40 samples. On comparing MS samples to the 158 longitudinal HC18 samples, the differences were found to be reproducibly significant for most of the species. These taxa comprised primarily of clostridial species belonging to Clostridia clusters XIVa and IV and Bacteroidetes. The phylogenetic tree analysis revealed that none of the clostridial species that were significantly reduced in the gut microbiota of patients with MS overlapped with other spore-forming clostridial species capable of inducing colonic regulatory T cells (Treg), which prevent autoimmunity and allergies; this suggests that many of the clostridial species associated with MS might be distinct from those broadly associated with autoimmune conditions. Correcting the dysbiosis and altered gut microbiota might deserve consideration as a potential strategy for the prevention and treatment of MS.
    PLoS ONE 09/2015; 10(9):e0137429. DOI:10.1371/journal.pone.0137429 · 3.23 Impact Factor