Induced effects of advanced oxidation processes.

Scientific Reports (Impact Factor: 5.08). 01/2014; 4:4018. DOI: 10.1038/srep04018
Source: PubMed

ABSTRACT Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen peroxide (H(2)O(2)) is a strong oxidant and its application in the treatment of various inorganic and organic pollutants is well established. Still H(2)O(2) alone is not effective for high concentrations of certain refractory contaminants because of low rates of reaction at reasonable H(2)O(2) concentrations. Improvements can be achieved by using transition metal salts (e.g. iron salts) or ozone and UV-light can activate H(2)O(2) to form hydroxyl radicals, which are strong oxidants. Oxidation processes utilising activation of H(2)O(2) by iron salts, classically referred to as Fenton's reagent is known to be very effective in the destruction of many hazardous organic pollutants in water. The first part of our paper presents a literature review of the various Fenton reagent reactions which constitute the overall kinetic scheme with all possible side reactions. It also summarises previous publications on the relationships between the dominant parameters (e.g. [H(2)O(2)], [Fe(2+)], . . .). The second part of our review discusses the possibility of improving sludge dewaterability using Fenton's reagent.
    Journal of Hazardous Materials 04/2003; 98(1-3):33-50. · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In developing countries, public health attention is focused on urgent health problems such as infectious diseases, malnutrition, and infant mortality. As a country develops and gains economic resources, more attention is directed to health concerns related to hazardous chemical wastes. Even if a country has little industry of its own that generates hazardous wastes, the importation of hazardous wastes for recycling or disposal can present health hazards. It is difficult to compare the quantities of hazardous wastes produced in different countries because of differences in how hazardous wastes are defined. In most countries, landfilling is the most common means of hazardous waste disposal, although substantial quantities of hazardous wastes are incinerated in some countries. Hazardous wastes that escape into the environment most often impact the public through air and water contamination. An effective strategy for managing hazardous wastes should encourage waste minimization, recycling, and reuse over disposal. Developing countries are especially in need of low-cost technologies for managing hazardous wastes.
    International Journal of Hygiene and Environmental Health 09/2003; 206(4-5):291-302. · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A highly efficient advanced oxidation process for the destruction of organic contaminants in water is reported. The technology is based on the cobalt-mediated decomposition of peroxymonosulfate that leads to the formation of very strong oxidizing species (sulfate radicals) in the aqueous phase. The system is a modification of the Fenton Reagent, since an oxidant is coupled with a transition metal in a similar manner. Sulfate radicals were identified with quenching studies using specific alcohols. The study was primarily focused on comparing the cobalt/peroxymonosulfate (Co/PMS) reagent with the traditional Fenton Reagent [Fe(II)/H2O2] in the dark, at the pH range 2.0-9.0 with and without the presence of buffers such as phosphate and carbonate. Three model contaminants that show diversity in structure were tested: 2,4-dichlorophenol, atrazine, and naphthalene. Cobalt/peroxymonosulfate was consistently proven to be more efficient than the Fenton Reagent for the degradation of 2,4-dichlorophenol and atrazine, at all the conditions tested. At high pH values, where the efficiency of the Fenton Reagent was diminished, the reactivity of the Co/PMS system was sustained at high values. When naphthalene was treated with the two oxidizing systems in comparison, the Fenton Reagent demonstrated higher degradation efficiencies than cobalt/peroxymonosulfate at acidic pH, but, at higher pH (neutral), the latter was proven much more effective. The extent of mineralization, as total organic carbon removed,was also monitored, and again the Co/PMS reagent demonstrated higher efficiencies than the Fenton Reagent. Cobalt showed true catalytic activity in the overall process, since extremely low concentrations (in the range of microg/L) were sufficient for the decomposition of the oxidant and thus the radical generation. The advantage of Co/PMS compared to the traditional Fenton Reagent is attributed primarily to the oxidizing strength of the radicals formed, since sulfate radicals are stronger oxidants than hydroxyl and the thermodynamics of the transition-metal-oxidant coupling.
    Environmental Science and Technology 11/2003; 37(20):4790-7. · 5.26 Impact Factor


1 Download
Available from