Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke

Journal of Neuroinflammation (Impact Factor: 5.41). 01/2014; 11(1):22. DOI: 10.1186/1742-2094-11-22
Source: PubMed

ABSTRACT Repetitive hypoxic preconditioning (RHP) creates an anti-inflammatory phenotype that protects from stroke-induced injury for months after a 2-week treatment. The mechanisms underlying long-term tolerance are unknown, though one exposure to hypoxia significantly increased peripheral B cell representation. For this study, we sought to determine if RHP specifically recruited B cells into the protected ischemic hemisphere, and whether RHP could phenotypically alter B cells prior to stroke onset.
Adult, male SW/ND4 mice received RHP (nine exposures over 2 weeks; 8 to 11 % O2; 2 to 4 hours) or identical exposures to 21 % O2 as control. Two weeks following RHP, a 60-minute transient middle cerebral artery occlusion was induced. Standard techniques quantified CXCL13 mRNA and protein expression. Two days after stroke, leukocytes were isolated from brain tissue (70:30 discontinuous Percoll gradient) and profiled on a BD-FACS Aria flow cytometer. In a separate cohort without stroke, sorted splenic CD19+ B cells were isolated 2 weeks after RHP and analyzed on an Illumina MouseWG-6 V2 Bead Chip. Final gene pathways were determined using Ingenuity Pathway Analysis. Student's t-test or one-way analysis of variance determined significance (P < 0.05).
CXCL13, a B cell-specific chemokine, was upregulated in post-stroke cortical vessels of both groups. In the ischemic hemisphere, RHP increased B cell representation by attenuating the diapedesis of monocyte, macrophage, neutrophil and T cells, to quantities indistinguishable from the uninjured, contralateral hemisphere. Pre-stroke splenic B cells isolated from RHP-treated mice had >1,900 genes differentially expressed by microarray analysis. Genes related to B-T cell interactions, including antigen presentation, B cell differentiation and antibody production, were profoundly downregulated. Maturation and activation were arrested in a cohort of B cells from pre-stroke RHP-treated mice while regulatory B cells, a subset implicated in neurovascular protection from stroke, were upregulated.
Collectively, our data characterize an endogenous neuroprotective phenotype that utilizes adaptive immune mechanisms pre-stroke to protect the brain from injury post-stroke. Future studies to validate the role of B cells in minimizing injury and promoting central nervous system recovery, and to determine whether B cells mediate an adaptive immunity to systemic hypoxia that protects from subsequent stroke, are needed.

Download full-text


Available from: Sterling Ortega, Mar 18, 2014
31 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cells leave the bone marrow as transitional B cells. Transitional B cells represent a target of negative selection and peripheral tolerance, both of which are abrogated in vitro by mediators of T cell help. In vitro, transitional and mature B cells differ in their responses to B cell receptor ligation. Whereas mature B cells up-regulate the T cell costimulatory molecule CD86 (B7.2) and are activated, transitional B cells do not and undergo apoptosis. The ability of transitional B cells to process and present Ag to CD4 T cells and to elicit protective signals in the absence of CD86 up-regulation was investigated. We report that transitional B cells can process and present Ag as peptide:MHC class II complexes. However, their ability to activate T cells and elicit help signals from CD4-expressing Th cells was compromised compared with mature B cells, unless exogenous T cell costimulation was provided. A stringent requirement for CD28 costimulation was not evident in interactions between transitional B cells and preactivated CD4-expressing T cells, indicating that T cells involved in vivo in an ongoing immune response might rescue Ag-specific transitional B cells from negative selection. These data suggest that during an immune response, immature B cells may be able to sustain the responses of preactivated CD4(+) T cells, while being unable to initiate activation of naive T cells. Furthermore, the ability of preactivated, but not naive T cells to provide survival signals to B cell receptor-engaged transitional immature B cells argues that these B cells may be directed toward activation rather than negative selection when encountering Ag in the context of a pre-existing immune response.
    The Journal of Immunology 09/2003; 171(4):1758-67. DOI:10.4049/jimmunol.171.4.1758 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In experimental animals, the presence of brain-derived constituents in cervical lymph nodes has been associated with the activation of local lymphocytes poised to minimize the inflammatory response after acute brain injury. In this study, we assessed whether this immune crosstalk also existed in stroke patients. We studied the clinical course, neuroimaging, and immunoreactivity to neuronal derived Ags (microtubule-associated protein-2 and N-methyl d-aspartate receptor subunit NR-2A), and myelin-derived Ags (myelin basic protein and myelin oligodendrocyte glycoprotein) in palatine tonsils and cervical lymph nodes of 28 acute stroke patients and 17 individuals free of neurologic disease. Stroke patients showed greater immunoreactivity to all brain Ags assessed compared with controls, predominantly in T cell zones. Most brain immunoreactive cells were CD68(+) macrophages expressing MHC class II receptors. Increased reactivity to neuronal-derived Ags was correlated with smaller infarctions and better long-term outcome, whereas greater reactivity to myelin basic protein was correlated with stroke severity on admission, larger infarctions, and worse outcome at follow-up. Patients also had more CD69(+) T cells than controls, indicative of T cell activation. Overall, the study showed in patients with acute stroke the presence of myelin and neuronal Ags associated with lymph node macrophages located near activated T cells. Whether the outcome of acute stroke is influenced by Ag-specific activation of immune responses mediated by CD69 lymphocytes deserves further investigation.
    The Journal of Immunology 03/2012; 188(5):2156-63. DOI:10.4049/jimmunol.1102289 · 4.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of adaptive immune responses is the generation of long-lived protection after primary exposure to a pathogen. In humoral responses, this protection stems from a combination of sustained antibody titers and long-lived memory B cells (MBCs), with the former deriving from long-lived plasma cells (PCs). Both types of cell are thought to primarily derive from the germinal center (GC), a unique structure that forms during the immune response to many types of antigenic stimuli. GCs are seeded by antigen-specific B and T cells that were previously activated in the early stages of the response. The GC does not directly or immediately generate effector function; rather, it is a site of intense B-cell proliferation and cell death. GC B cells undergo both somatic hypermutation and isotype switch, and a Darwinian process very efficiently selects B cells with higher fitness for survival and expansion. GC B cells adopt a unique activation and transcriptional state, and the cells become poised to differentiate to either MBCs or PCs. Despite this general understanding of the events in the GC, the mechanisms that control both affinity selection as well as differentiation have not been well worked out. In this review, we address what is known about what determines whether GC B cells become MBCs or PCs. This is discussed in the broader context of the origins of both cell types, whether from the GC or potentially other sources. We present a model encompassing recent data from several laboratories including our own that suggests that the GC undergoes a temporal switch that alters the nature of its output from MBCs to PCs as the response progresses. We will discuss B-cell receptor signaling in the GC as it relates to potential mechanisms for affinity-based selection during the reaction.
    Immunological Reviews 05/2012; 247(1):52-63. DOI:10.1111/j.1600-065X.2012.01124.x · 10.12 Impact Factor
Show more

Similar Publications