Article

Loss of wild-type Jak2 allele enhances myeloid cell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice

Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K (Impact Factor: 9.38). 01/2014; 28(8). DOI: 10.1038/leu.2014.52
Source: PubMed

ABSTRACT JAK2V617F is the most common mutation found in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Although a majority of MPN patients carry heterozygous JAK2V617F mutation, loss of heterozygosity (LOH) on chromosome 9p involving the JAK2 locus has been observed in ~30% of MPN patients. JAK2V617F homozygosity via 9pLOH has been associated with more severe MPN phenotype. However, the contribution of 9pLOH in the pathogenesis of MPNs remains unclear. To investigate the roles of wild-type JAK2 (JAK2 WT) and JAK2V617F alleles in the development of MPNs, we have utilized conditional Jak2 knock-out and Jak2V617F knock-in mice and generated heterozygous, hemizygous and homozygous Jak2V617F mice. Whereas heterozygous Jak2V617F expression results in a polycythemia vera-like MPN in mice, loss of Jak2 WT allele in hemizygous or homozygous Jak2V617F mice results in markedly increased white blood cells, neutrophils, reticulocytes and platelets in the peripheral blood, and significantly larger spleen size compared with heterozygous Jak2V617F mice. Hemizygous or homozygous Jak2V617F mice also exhibit accelerated myelofibrosis compared with mice expressing heterozygous Jak2V617F. Together, these results suggest that loss of Jak2 WT allele increases the severity of the MPN. Thus, the Jak2 WT allele functions as a negative regulator of MPN induced by Jak2V617F.Leukemia accepted article preview online, 31 January 2014. doi:10.1038/leu.2014.52.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia is one of the leading journals in hematology and oncology. It is published monthly and covers all aspects of the research and treatment of leukemia and allied diseases. Studies of normal hemopoiesis are covered because of their comparative relevance.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 10/2008; 23(3):610-4. DOI:10.1038/leu.2008.249 · 9.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Megakaryopoiesis and platelet formation is a multistep process through which hematopoietic progenitor cells develop into mature megakaryocytes (MKs) and form proplatelets. The present study investigates the regulation of different steps of megakaryopoiesis (i.e., differentiation, migration, and proplatelet formation) by extracellar signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) in two models of primary murine MKs derived from bone marrow (BM) cells and fetal liver (FL) cells. A preparation of MKs was generated from BM obtained from femora and tibiae of C57BL6 mice. FL-derived MKs were obtained from the liver of mouse fetuses aged 13 to 15 days. For both cell populations, activation of MEK-ERK1/2 pathway by thrombopoietin was found to have a critical role in MK differentiation, regulating polyploidy and surface expression of CD34, GPIIb, and GPIb. The MEK-ERK1/2 pathway plays a major role in migration of BM-derived MKs toward a stromal-cell-derived factor 1alpha (SDF1alpha) gradient, whereas unexpectedly, FL-derived cells fail to migrate in response to the chemokine due to negligible expression of its receptor, CXCR4. The MEK-ERK1/2 pathway also plays a critical role in the generation of proplatelets. In contrast, p38MAPK pathway was not involved in any of these processes. This report demonstrates a critical role of MEK-ERK1/2 pathway in MK differentiation, motility, and proplatelet formation. This study highlights several differences between BM- and FL-derived MKs, which are discussed.
    Experimental hematology 08/2009; 37(10):1238-1249.e5. DOI:10.1016/j.exphem.2009.07.006 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A somatic point mutation (V617F) in the JAK2 tyrosine kinase was found in a majority of patients with polycythemia vera (PV), essential thrombocythemia, and primary myelofibrosis. However, contribution of the JAK2V617F mutation in these 3 clinically distinct myeloproliferative neoplasms (MPNs) remained unclear. To investigate the role of JAK2V617F in the pathogenesis of these MPNs, we generated an inducible Jak2V617F knock-in mouse, in which the expression of Jak2V617F is under control of the endogenous Jak2 promoter. Expression of heterozygous mouse Jak2V617F evoked all major features of human polycythemia vera (PV), which included marked increase in hemoglobin and hematocrit, increased red blood cells, leukocytosis, thrombocytosis, splenomegaly, reduced serum erythropoietin (Epo) levels and Epo-independent erythroid colonies. Homozygous Jak2V617F expression also resulted in a PV-like disease associated with significantly greater reticulocytosis, leukocytosis, neutrophilia and thrombocytosis, marked expansion of erythroid progenitors and Epo-independent erythroid colonies, larger spleen size, and accelerated bone marrow fibrosis compared with heterozygous Jak2V617F expression. Biochemical analyses revealed Jak2V617F gene dosage-dependent activation of Stat5, Akt, and Erk signaling pathways. Our conditional Jak2V617F knock-in mice provide an excellent model that can be used to further understand the molecular pathogenesis of MPNs and to identify additional genetic events that cooperate with Jak2V617F in different MPNs.
    Blood 03/2010; 115(17):3589-97. DOI:10.1182/blood-2009-04-215848 · 10.43 Impact Factor
Show more

Preview

Download
2 Downloads
Available from