The effects of chronic ethanol self-administration on hippocampal 5-HT1A receptors in monkeys

Drug and alcohol dependence (Impact Factor: 3.42). 01/2014; 136(1). DOI: 10.1016/j.drugalcdep.2014.01.002
Source: PubMed


Chronic alcohol consumption reduces brain serotonin and alters the synaptic mechanisms involved in memory formation. Hippocampal 5-HT1A receptors modulate these mechanisms, but the neuroadaptive response of 5HT1A receptors to chronic alcohol self-administration is not well understood.
Hippocampal tissue from monkeys that voluntarily self-administered ethanol for 12 months (n=9) and accompanying controls (n=8) were prepared for in vitro receptor autoradiography and laser capture microdissection. The 5-HT1A receptor antagonist, [(3)H]MPPF, and the agonist, [(3)H]8-OH-DPAT, were used to measure total and G-protein coupled 5-HT1A receptors respectively. The expression of the genes encoding the 5-HT1A receptor and its trafficking protein Yif1B was measured in microdissected dentate gyrus (DG) granule cells and CA1 pyramidal neurons.
An increase in G-protein coupled, but not total, receptors was observed in the posterior pyramidal cell layer of CA1 in ethanol drinkers compared to controls. Chronic ethanol self-administration was also associated with an up-regulation of total and G-protein coupled 5-HT1A receptors in the posterior DG polymorphic layer. Changes in receptor binding were not associated with concomitant changes in 5-HT1A receptor mRNA expression. Chronic ethanol self-administration was associated with a significant increase in Yif1B gene expression in posterior CA1 pyramidal neurons.
Chronic, ethanol self-administration up-regulates hippocampal 5-HT1A receptor density in a region-specific manner that does not appear to be due to alterations at the level of transcription but instead may be due to increased receptor trafficking. Further exploration of the mechanisms mediating chronic ethanol-induced 5-HT1A receptor up-regulation and how hippocampal neurotransmission is altered is warranted.

Download full-text


Available from: Scott E Hemby, Jul 18, 2014
35 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
    Behavioural brain research 04/2014; 277. DOI:10.1016/j.bbr.2014.04.007 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Previous studies have found interrelationships between the serotonin system and alcohol self-administration. The goal of this work was to directly observe in vivo effects of chronic ethanol self-administration on serotonin 5-HT1A receptor binding with [(18)F]mefway PET neuroimaging in rhesus monkeys. Subjects were first imaged alcohol-naïve and again during chronic ethanol self-administration to quantify changes in 5-HT1A receptor binding. Methods: Fourteen rhesus monkey subjects (10.7-12.8 years) underwent baseline [(18)F]mefway PET scans prior to alcohol exposure. Subjects then drank gradually increasing ethanol doses over four months as an induction period, immediately followed by at least nine months ad libidum ethanol access. A post [(18)F]mefway PET scan was acquired during the final three months of ad libidum ethanol self-administration. 5-HT1A receptor binding was assayed with binding potential (BPND) using the cerebellum as a reference region. Changes in 5-HT1A binding during chronic ethanol self-administration were examined. Relationships of binding metrics with daily ethanol self-administration were also assessed. Results: Widespread increases in 5-HT1A binding were observed during chronic ethanol self-administration, independent of the amount of ethanol consumed. A positive correlation between 5-HT1A binding in the raphe nuclei and average daily ethanol self-administration was also observed, indicating that baseline 5-HT1A binding in this region predicted drinking levels. Conclusions: The increase in 5-HT1A binding levels during chronic ethanol self-administration demonstrates an important modulation of the serotonin system due to chronic alcohol exposure. Furthermore, the correlation between 5-HT1A binding in the raphe nuclei and daily ethanol self-administration indicates a relationship between the serotonin system and alcohol self-administration.
    Drug and Alcohol Dependence 08/2014; 144. DOI:10.1016/j.drugalcdep.2014.08.015 · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholism is a progressive brain disorder that is marked by increased sensitivity to the positive and negative reinforcing properties of ethanol, compulsive and habitual use despite negative consequences, and chronic relapse to alcohol drinking despite repeated attempts to reduce intake or abstain from alcohol. Emerging evidence from preclinical and clinical studies implicates serotonin (5-hydroxytryptamaine; 5-HT) systems in the pathophysiology of alcohol dependence, suggesting that drugs targeting 5-HT systems may have utility in the treatment of alcohol use disorders. In this review, we discuss the role of 5-HT systems in alcohol dependence with a focus on 5-HT interactions with neural circuits that govern all three stages of the addiction cycle. We attempt to clarify how 5-HT influences circuit function at these different stages with the goal of identifying neural targets for pharmacological treatment of this debilitating disorder.
    ACS Chemical Neuroscience 02/2015; 6(7). DOI:10.1021/cn5003573 · 4.36 Impact Factor
Show more