One-Step Surgery With Multipotent Stem Cells for the Treatment of Large Full-Thickness Chondral Defects of the Knee

The American Journal of Sports Medicine (Impact Factor: 4.36). 01/2014; 42(3). DOI: 10.1177/0363546513518007
Source: PubMed


BACKGROUND:Chondral lesions in athletically active patients cause considerable morbidity, and treatment with existing cell-based therapies can be challenging. Bone marrow has been shown as a possible source of multipotent stem cells (MSCs) with chondrogenic potential and is easy to harvest during the same surgical procedure. PURPOSE:To investigate the clinical outcome in a group of active patients with large full-thickness chondral defects of the knee treated with 1-step surgery using bone marrow-derived MSCs and a second-generation matrix. STUDY DESIGN:Case series; Level of evidence, 4. METHODS:From January 2007 to February 2010, 25 patients (average age, 46.5 years) with symptomatic large chondral defects of the knee (International Cartilage Repair Society grade 4) who underwent cartilage transplantation with MSCs and a collagen type I/III matrix were followed up for a minimum of 3 years. The average lesion size was 8.3 cm(2). Coexisting injuries were treated during the same surgical procedure in 18 patients. All patients underwent a standard postoperative rehabilitation program. Preoperative and postoperative evaluations at 1-year, 2-year, and final follow-up included radiographs, magnetic resonance imaging (MRI), and visual analog scale (VAS) for pain, International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm, Marx, and Tegner scores. Seven patients underwent second-look arthroscopic surgery, with 4 consenting to a tissue biopsy. RESULTS:No patients were lost at final follow-up. The average preoperative values for the evaluated scores were significantly improved at final follow-up (P < .001): VAS, 5.4 ± 0.37 to 0.48 ± 0.19; IKDC subjective, 37.92 ± 4.52 to 81.73 ± 2.42; KOOS pain, 61.04 ± 3.95 to 93.32 ± 1.92; KOOS symptoms, 55.64 ± 3.23 to 89.32 ± 2.32; KOOS activities of daily living, 63.96 ± 4.48 to 91.20 ± 2.74; KOOS sports, 34.20 ± 5.04 to 80.00 ± 3.92; KOOS quality of life, 32.20 ± 4.43 to 83.04 ± 3.37; Lysholm, 46.36 ± 2.25 to 86.52 ± 2.73; Marx, 3.00 ± 0.79 to 9.04 ± 0.79; and Tegner, 2.12 ± 0.32 to 5.64 ± 0.26. Patients younger than 45 years of age and those with smaller or single lesions showed better outcomes. The MRI scans showed good stability of the implant and complete filling of the defect in 80% of patients, and hyaline-like cartilage was found in the histological analysis of the biopsied tissue. No adverse reactions or postoperative complications were noted. CONCLUSION:The treatment of large chondral defects with MSCs is an effective procedure and can be performed routinely in clinical practice. Moreover, it can be achieved with 1-step surgery, avoiding a previous surgical procedure to harvest cartilage and subsequent chondrocyte cultivation.

1 Follower
14 Reads
  • Source
    • "Following this rationale, such constructs were first applied in combination with cultured cells (chondrocytes) such as a 3D support for a better tissue regeneration, thus producing good results even at mid-long term follow-up (Filardo et al. 2014b; Brix et al. 2014). Subsequently, this kind of matrix was applied as " one-step " surgical augmentation to marrow-stimulating techniques, by implanting into the defect alone, thus avoiding any cell addition (Anders et al. 2013; Gille et al. 2013), or in combination with mesenchymal stem cells, harvested and seeded during the same surgical procedure (Gobbi et al. 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several techniques have been used during the years to treat chondral and osteochondral lesions. Among them, the emerging trend in the field of osteochondral regeneration is to treat the entire osteochondral unit by implanting cell-free scaffolds, which provide a three-dimensional support for the cell growth and may act themselves as stimuli for an “in situ” tissue regeneration. Various multi-layered products have been proposed that mimic both the subchondral bone and the cartilaginous layer. Among these, three have currently been reported in the literature. One has been widely investigated: it is a nanocomposite three-layered collagen-hydroxyapatite scaffold, which is showing promising results clinically and by MRI even at mid-term follow-up. The second is a PLGA-calcium-sulfate bilayer scaffold: however, the literature findings are still controversial and only short-term outcomes of limited case-series have been published. The most recent one is a solid aragonite-based scaffold, which seems to give promising clinical and MRI outcomes, even if the literature is still lacking more in-depth evaluations. Even though the Literature related to this topic is quickly increasing in number, the clinical evidence it is still limited to some case series, and high-level studies are needed to better demonstrate their real effectiveness.
    08/2014; 1(1):10. DOI:10.1186/s40634-014-0010-0
  • Source

    The American Journal of Sports Medicine 02/2014; 42(2):NP19-20. DOI:10.1177/0363546513518304 · 4.36 Impact Factor
  • Source

    The American Journal of Sports Medicine 02/2014; 42(2):NP20-1. DOI:10.1177/0363546514522979 · 4.36 Impact Factor
Show more