Article

Diet-Beverage Consumption and Caloric Intake Among US Adults, Overall and by Body Weight

American Journal of Public Health (Impact Factor: 4.23). 01/2014; 104(3). DOI: 10.2105/AJPH.2013.301556
Source: PubMed

ABSTRACT Objectives. We examined national patterns in adult diet-beverage consumption and caloric intake by body-weight status. Methods. We analyzed 24-hour dietary recall with National Health and Nutrition Examination Survey 1999-2010 data (adults aged ≥ 20 years; n = 23 965). Results. Overall, 11% of healthy-weight, 19% of overweight, and 22% of obese adults drink diet beverages. Total caloric intake was higher among adults consuming sugar-sweetened beverages (SSBs) compared with diet beverages (2351 kcal/day vs 2203 kcal/day; P = .005). However, the difference was only significant for healthy-weight adults (2302 kcal/day vs 2095 kcal/day; P < .001). Among overweight and obese adults, calories from solid-food consumption were higher among adults consuming diet beverages compared with SSBs (overweight: 1965 kcal/day vs 1874 kcal/day; P = .03; obese: 2058 kcal/day vs 1897 kcal/day; P < .001). The net increase in daily solid-food consumption associated with diet-beverage consumption was 88 kilocalories for overweight and 194 kilocalories for obese adults. Conclusions. Overweight and obese adults drink more diet beverages than healthy-weight adults and consume significantly more solid-food calories and a comparable total calories than overweight and obese adults who drink SSBs. Heavier US adults who drink diet beverages will need to reduce solid-food calorie consumption to lose weight. (Am J Public Health. Published online ahead of print January 16, 2014: e1-e7. doi:10.2105/AJPH.2013.301556).

3 Followers
 · 
153 Views
 · 
0 Downloads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review: The consumption of low-calorie beverages has increased worldwide, mainly because of their combination of sweet taste without adding significant calories to the diet. However, some epidemiological studies have linked the higher consumption of low-calorie beverages with increased body weight gain. Recent findings: Although a matter of debate, this paradoxical association between low-calorie beverages and weight gain has been attributed to their effect on the enteral-brain axis. More specifically, artificial sweeteners present in low-calorie beverages could induce appetite increase, probably due to an ambiguous psychobiological signal (uncoupling sweet taste from calorie intake) that confounds the appetite's regulatory mechanisms, promoting overeating and, ultimately, leading to weight gain. However, many studies do not support this assumption, and the mechanisms underlying the interaction between low-calorie beverages and the enteral-brain axis remain to be defined. Summary: The understanding of the effects of low-calorie drinks on the enteral-brain axis still remains in its infancy and needs to be unveiled. The consumption of low-calorie beverages reduces the calories from that drink, but compensatory phenomena may increase energy intake, and if so must be recognized and avoided.
    Current Opinion in Clinical Nutrition and Metabolic Care 07/2014; 17(5). DOI:10.1097/MCO.0000000000000082 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The possibility that low-calorie sweeteners (LCS) promote lower quality diets and, therefore, weight gain has been noted as a cause for concern. Data from a representative sample of 22,231 adults were obtained from five cycles of the National Health and Nutrition Examination Survey (1999-2008 NHANES). A single 24-hour recall was used to identify consumers of LCS beverages, foods and tabletop sweeteners. Diet quality was assessed using the Healthy Eating Index 2005 (HEI 2005) and its multiple subscores. Health behaviors of interest were physical activity, smoking and alcohol use. LCS consumers had higher HEI 2005 scores than did non-consumers, largely explained by better SoFAAS subscores (solid fats, added sugar and alcohol). LCS consumers had better HEI subscores for vegetables, whole grains and low-fat dairy, but worse subscores for saturated fat and sodium compared to non-consumers. Similar trends were observed for LCS beverages, tabletop LCS and LCS foods. Consumers of LCS were less likely to smoke and were more likely to engage in recreational physical activity. LCS use was associated with higher HEI 2005 scores, lower consumption of empty calories, less smoking and more physical activity.
    Nutrients 10/2014; 6(10):4389-4403. DOI:10.3390/nu6104389 · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5–7 mg/kg/d in drinking water) treatments for 8 week (n = 10–12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P,0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.
    PLoS ONE 10/2014; DOI:10.1371/journal.pone.0109841 · 3.23 Impact Factor
Show more