Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment.

PLoS ONE (Impact Factor: 3.73). 01/2014; 9(1):e84568. DOI: 10.1371/journal.pone.0084568
Source: PubMed

ABSTRACT Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic levels due to a combination of direct and indirect effects in diverse multitrophic ecosystems.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analysed how woody vegetation of differing cover affects plant diversity (richness and evenness) and the surrogates of multiple ecosystem processes (multifunctionality) in global drylands, and how these change with aridity. Location Two hundred and twenty-four dryland sites from all continents except Antarctica, widely differing in their environmental conditions (from arid to dry-subhumid sites) and relative woody cover (from 0 to 100%). Methods Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 soil variables related to fertility and the build-up of nutrient pools. These variables are critical for maintaining ecosystem functioning in drylands. Results Species richness and ecosystem multifunctionality were strongly related to woody vegetation, with both variables peaking at a relative woody cover (RWC) of 41–60%. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC–diversity and multifunctionality relationships under semi-arid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions. Main conclusions Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive in wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of levels of woody cover and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in the current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem services.
    Global Ecology and Biogeography 09/2014; · 7.22 Impact Factor