HIV-1 persistence in CD4(+) T cells with stem cell-like properties.

Nature medicine (Impact Factor: 28.05). 01/2014; DOI: 10.1038/nm.3445
Source: PubMed

ABSTRACT Cellular HIV-1 reservoirs that persist despite antiretroviral treatment are incompletely defined. We show that during suppressive antiretroviral therapy, CD4(+) T memory stem cells (TSCM cells) harbor high per-cell levels of HIV-1 DNA and make increasing contributions to the total viral CD4(+) T cell reservoir over time. Moreover, we conducted phylogenetic studies that suggested long-term persistence of viral quasispecies in CD4(+) TSCM cells. Thus, HIV-1 may exploit the stem cell characteristics of cellular immune memory to promote long-term viral persistence.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Effective antiretroviral therapy (ART) blunts viraemia, which enables HIV-1-infected individuals to control infection and live long, productive lives. However, HIV-1 infection remains incurable owing to the persistence of a viral reservoir that harbours integrated provirus within host cellular DNA. This latent infection is unaffected by ART and hidden from the immune system. Recent studies have focused on the development of therapies to disrupt latency. These efforts unmasked residual viral genomes and highlighted the need to enable the clearance of latently infected cells, perhaps via old and new strategies that improve the HIV-1-specific immune response. In this Review, we explore new approaches to eradicate established HIV-1 infection and avoid the burden of lifelong ART.
    Nature Reviews Microbiology 10/2014; 12(11):750-64. · 23.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundCD4+ memory T-cells are a major target for infection by HIV-1, whereby latent provirus can establish and endure suppressive antiretroviral therapies. Although HIV-1 subtype C strains (C-HIV) account for the majority of HIV-1 infections worldwide, the susceptibility of CD4+ memory T-cells to infection by CCR5- (R5) and CXCR4-using (X4) C-HIV is unknown. Here, we quantified the susceptibility of naïve and memory CD4+ T-cell subsets, including stem cell memory T-cells (TSCM), to infection by HIV-1 subtype C (C-HIV) strains from treatment-naïve subjects who progressed from chronic to advanced stages of disease whilst either maintaining CCR5-using (R5) viruses (subjects 1503 and 1854), or who experienced emergence of dominant CXCR4-using (X4) strains (subject 1109).FindingsWe show that R5 and X4 C-HIV viruses preferentially target memory and naïve CD4+ T-cell subsets, respectively. While TSCM were susceptible to infection by both R5 and X4 C-HIV viruses, the proportion of infected CD4+ T-cells that were TSCM was higher for R5 strains. Mutagenesis studies of subject 1109 viruses established the V3 region of env as the determinant underlying the preferential targeting of naïve CD4+ T-cells by emergent X4 C-HIV variants in this subject. In contrast, the tropism of R5 C-HIV viruses for CD4+ T-cell subsets was maintained from chronic to advanced stages of disease in subjects 1503 and 1854.Conclusions This study provides new insights into the natural history of tropism alterations for CD4+ T-cell subsets by C-HIV strains during progression from chronic to advanced stages of infection. Although not preferentially targeted, our data suggest that TSCM and other memory CD4+ T-cells are likely to be viral reservoirs in subjects with X4 C-HIV infection.
    Retrovirology 11/2014; 11(1):97. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients who are receiving prolonged antiretroviral treatment (ART), HIV can persist within a small pool of long-lived resting memory CD4 þ T cells infected with integrated latent virus. This latent reservoir involves distinct memory subsets. Here we provide results that suggest a progressive reduction of the size of the blood latent reservoir around a core of less-differ-entiated memory subsets (central memory and stem cell-like memory (T SCM) CD4 þ T cells). This process appears to be driven by the differences in initial sizes and decay rates between latently infected memory subsets. Our results also suggest an extreme stability of the T SCM sub-reservoir, the size of which is directly related to cumulative plasma virus exposure before the onset of ART, stressing the importance of early initiation of effective ART. The presence of these intrinsic dynamics within the latent reservoir may have implications for the design of optimal HIV therapeutic purging strategies.
    Nature Communications 11/2014; · 10.74 Impact Factor

Full-text (3 Sources)

Available from
Aug 14, 2014