Article

Influence of Dietary Protein on Glomerular Filtration Before and After Bariatric Surgery: A Cohort Study

American Journal of Kidney Diseases (Impact Factor: 5.76). 12/2013; 63(4). DOI: 10.1053/j.ajkd.2013.11.012
Source: PubMed

ABSTRACT Obesity-associated elevations in glomerular filtration rate (GFR) are common and may play a role in the development of kidney disease, so identifying the underlying mechanism is important. We therefore studied whether reductions in dietary protein intake, which is known to modulate GFR, explain why GFR decreases after bariatric surgery-induced weight loss.
Cohort study with participants as their own controls.
8 severely obese patients with normal kidney function were recruited from bariatric surgery centers in Indianapolis, IN. All participants were placed on a fixed-protein (50-g/d) diet for 1 week before and after a minimum of a 20-kg weight loss by bariatric surgery and were followed up closely by dieticians for adherence.
Ad lib versus low-protein diet before versus after bariatric surgery.
Measured GFR, using repeated-measures analysis, was used to estimate the independent effects of diet and surgery.
GFR was measured using plasma iohexol clearance.
A median of 32.9 (range, 19.5-54.4)kg was lost between the first presurgery visit and first postsurgery visit. Dietetic evaluations and urinary urea excretion confirmed that patients generally adhered to the study diet. GFRs on an ad lib diet were significantly higher before compared to after surgery (GFR medians were 144 (range, 114-178) and 107 (range, 85-147) mL/min, respectively; P=0.01). Although bariatric surgery (-26mL/min; P=0.005) and dietary sodium intake (+7.5mL/min per 100mg of dietary sodium; P=0.001) both influenced GFR, consuming a low-protein diet did not (P=0.7).
Small sample size; mostly white women; possible lack of generalizability.
The decrease in GFR observed after bariatric surgery is explained at least in part by the effects of surgery and/or dietary sodium intake, but not by low dietary protein consumption.

0 Followers
 · 
67 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: Identifying the best method to estimate the glomerular filtration rate (GFR) in bariatric surgery patients has important implications for the clinical care of obese patients and research into the impact of obesity and weight reduction on kidney health. We therefore performed such an analysis in patients before and after surgical weight loss. Methods: Fasting measured GFR (mGFR) by plasma iohexol clearance before and after bariatric surgery was obtained in 36 severely obese individuals. Estimated GFR was calculated using the Modification of Diet in Renal Disease equation, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation using serum creatinine only, the CKD-EPI equation using serum cystatin C only and a recently derived equation that uses both serum creatinine and cystatin C (CKD-EPIcreat-cystC) and then compared to mGFR. Results: Participants were primarily middle-aged white females with a mean baseline body mass index of 46 ± 9, serum creatinine of 0.81 ± 0.24 mg/dl and mGFR of 117 ± 40 ml/min. mGFR had a stronger linear relationship with inverse cystatin C before (r = 0.28, p = 0.09) and after (r = 0.38, p = 0.02) surgery compared to the inverse of creatinine (before: r = 0.26, p = 0.13; after: r = 0.11, p = 0.51). mGFR fell by 17 ± 35 ml/min (p = 0.007) following surgery. The CKD-EPIcreat-cystC was unquestionably the best overall performing estimating equation before and after surgery, revealing very little bias and a capacity to estimate mGFR within 30% of its true value over 80% of the time. This was true whether or not mGFR was indexed for body surface area. Conclusions: In severely obese bariatric surgery patients with normal kidney function, cystatin C is more strongly associated with mGFR than is serum creatinine. The CKD-EPIcreat-cystC equation best predicted mGFR both before and after surgery. © 2013 S. Karger AG, Basel.
    American Journal of Nephrology 12/2013; 39(1):8-15. DOI:10.1159/000357231 · 2.65 Impact Factor