Article

Geo-engineering evaluation of Termaber basalt rock mass for crushed stone aggregate and building stone from Central Ethiopia

University of Cagliari, Department of Civil and Environmental Engineering and Architecture, Via Marengo 2, 09123 Cagliari, Italy
Journal of African Earth Sciences (Impact Factor: 1.38). 12/2013; 99. DOI: 10.1016/j.jafrearsci.2013.11.020

ABSTRACT The geology of the central part of Ethiopia exhibits a variety of rock types that can potentially be developed for construction stone production, of which the most wide spread and important one is the Termaber basalt. Even though some preliminary work is done on these rocks towards construction material application, it remains largely that this resource is untouched and needs further scientific characterization for the use in large scale industrial application. Basaltic rocks have been widely used in many parts of the world as concrete aggregate and dimension stone for various civil structures. The present research study was carried out for Geo-engineering evaluation of Termaber basalt rock mass for crushed stone aggregate and building stone from Central Ethiopia (around Debre Birhan).

2 Followers
 · 
289 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The investigation of the physical and mechanical properties of stones in monuments needs non-destructive methods and small quantity of testing material. The non-destructive methods can be divided into laboratory andin situ techniques. P P S wave ultrasonic velocities and Schmidt hammer can be used for bothin situ and laboratory measurements, in contrast to the mechanical resonance frequency and abrasion resistance that can be used only for investigation in the laboratory. In the present paper the above methods were used for the study of properties such as mechanical anisotropy, weathering degree, mechanical strength and deformation ability of stones, using data from Italy, France, Malta and Pacific Ocean. La recherche des propriétés physiques et mécaniques des pierres des monuments doit untiliser des méthodes non destructives et des échantillons de dimensions réduites. La mesure de la vitesse des ondes P & S et le marteau Schmidt peuvent être utilisées en laboratoire aussi bien quein situ, contrairement à la fréquence de résonance mécanique et à la résistance à l'abrasion qui sont des méthodes utilisable seulement en laboratoire. Dans le présent article ces méthodes ont été utilisées pour étudier des propriétés telles que l'anisotropie mécanique, le degré d'altération, la résistance mécanique et la déformabilité des pierres en utilisant des données provenat d'Italie, de France, de Malte et de l'Océan Pacifique.
    Bulletin of Engineering Geology and the Environment 09/1996; 54(1):59-63. DOI:10.1007/BF02600697 · 0.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: After reviewing the geological classification of carbonate rocks, a method of describing carbonate rocks for engineering purposes is developed following the recommendations set out by the I.A.E.G. Mapping Commission. Particular attention is paid to the details of the weathering profile developed on carbonate rocks. The engineering classification of carbonate rocks is based on both the engineering behaviour of the rock as a material and in the mass. Physical properties, including strength and deformation characteristics, are used to determine a modulus ratio for a wide range of limestones including the English chalk. In addition to rock material properties, and engineering classification of the rock mass has to take account of structure, discontinuities, and details of the weathering profile. Assessment of rock mass properties requiresin situ testing to determine deformation characteristics. If the usually limited amount of data on such quantitativein situ properties is related to other measures of rock quality, then engineering geological mapping can be used to extend the applicability of the limitedin situ data to a whole site. RQD has been related to the compressibility of the rock mass, and a rock mass factor has been proposed that links the deformability of the rock material to that of the rock mass. Rock mass classifications for large underground openings may be used with limestones. Engineering problems associated with carbonate rocks are briefly reviewed, as are the properties of limestones as a building stone and as aggregate. Après avoir revu la classification géologique pour les roches carbonatées, on développe une méthode décrivant les roches carbonatées pour des ingénieurs. On suit les recommandations de la commission de l'AIGI sur la cartographie. On fait particulièrement attention aux détails des profils d'altération se développant sur les roches carbonatées. La classification géotechnique des roches carbonatées est basée sur le comportement des roches aussi bien comme matériau que comme massif. Les propriétés physiques—la résistance et la déformation y compris—sont utilisées pour déterminer un rapport de module pour un grand nombre de calcaires, y compris la craie anglaise. En plus des propriétés des roches en tant que matériau une classification des massifs de roches à but géotechnique doit considérer la structure, les discontinuités et les détails des profils d'altération. L'estimation des propriété ses massifs rocheux exige des expériencesin situ pour déterminer les caractéristiques de déformation. Si l'on met en rapport la quantité des informations sur ces propriété, généralement limitée, avec d'autres mesures sur la qualitè des roches, la cartographie géotechnique peut être utilisée, pour étendre l'applicabilité des informations ponctuelles obtenuesin situ au site en général. Le RQD a été relié à la compressibilité du massif rocheux; on a proposé un facteur de massif qui rellie la déformabilité du matériau des roches à celle du massif. La classification des massifs rocheux pour de grandes cavités souterraines peut être utilisée pour des calcaires. Les problèmes de l'ingénieur concernant les roches carbonatées sont brièvement passés en revue ainsi que les propriétés des calcaires come pierre à bâtir et comme agrégat.
    Bulletin of Engineering Geology and the Environment 12/1981; 24(1):3-17. DOI:10.1007/BF02595246 · 0.72 Impact Factor
  • Quarterly Journal of Engineering Geology and Hydrogeology 11/1980; 13(4):207-229. DOI:10.1144/GSL.QJEG.1980.013.04.02 · 0.57 Impact Factor