Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia

Developmental Biology (Impact Factor: 3.55). 12/2013; 386(1). DOI: 10.1016/j.ydbio.2013.12.014
Source: PubMed


Development of the mammalian external genitalia is controlled by a network of signaling molecules and transcription factors. Because FGF signaling plays a central role in this complicated morphogenetic process, we investigated the role of Sprouty genes, which are important intracellular modulators of FGF signaling, during embryonic development of the external genitalia in mice. We found that Sprouty genes are expressed by the urethral epithelium during embryogenesis, and that they have a critical function during urethral canalization and fusion. Development of the genital tubercle (GT), the anlage to the prepuce and glans penis in males and glans clitoris in females, was severely affected in male embryos carrying null alleles of both Spry1 and Spry2. In Spry1(-/-);Spry2(-/-) embryos, the internal tubular urethra was absent, and urothelial morphology and organization was abnormal. These effects were due, in part, to elevated levels of epithelial cell proliferation in Spry1(-/-);Spry2(-/-) embryos. Despite changes in overall organization, terminal differentiation of the urothelium was not significantly affected. Characterization of the molecular pathways that regulate normal GT development confirmed that deletion of Sprouty genes leads to elevated FGF signaling, whereas levels of signaling in other cascades were largely preserved. Together, these results show that levels of FGF signaling must be tightly regulated during embryonic development of the external genitalia in mice, and that this regulation is mediated in part through the activity of Sprouty gene products.

1 Follower
21 Reads
  • Source
    • "At E13, the urorectal septum reaches the embryo surface, resulting in complete separation of the UGS and hindgut. Here, proportions of the cloacal membrane disintegrate in mice and humans, contributing to formation of the anal opening and an opening in the PHUR called the proximal urethral meatus (Fig. 1C,H and Fig. 2C; Nievelstein et al., 1998; Perriton et al., 2002; Sasaki et al., 2004; Seifert et al., 2008, 2009a,b; Lin et al., 2009; Ng et al., 2014; Ching et al., 2014; Miyagawa et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. © 2015. Published by The Company of Biologists Ltd.
    Development 05/2015; 142(10):1893-908. DOI:10.1242/dev.117903 · 6.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the main functions of androgen is in the sexually dimorphic development of the male reproductive tissues. During embryogenesis, androgen determines the morphogenesis of male specific organs, such as the epididymis, seminal vesicle, prostate and penis. Despite the critical function of androgens in masculinization, the downstream molecular mechanisms of androgen signaling are poorly understood. Tissue recombination experiments and tissue specific androgen receptor (AR) knockout mouse studies have revealed epithelial or mesenchymal specific androgen-AR signaling functions. These findings also indicate that epithelial-mesenchymal interactions are a key feature of AR specific activity, and paracrine growth factor action may mediate some of the effects of androgens. This review focuses on mouse models showing the interactions of androgen and growth factor pathways that promote the sexual differentiation of reproductive organs. Recent studies investigating context dependent AR target genes are also discussed. This article is part of a Special Issue entitled: Nuclear receptors in animal development
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 01/2014; · 6.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
    CANCER AND METASTASIS REVIEW 04/2014; 33(2-3). DOI:10.1007/s10555-014-9497-1 · 7.23 Impact Factor
Show more


21 Reads
Available from