Mutations in CSPP1 Cause Primary Cilia Abnormalities and Joubert Syndrome with or without Jeune Asphyxiating Thoracic Dystrophy

The American Journal of Human Genetics (Impact Factor: 10.93). 12/2013; 94(1). DOI: 10.1016/j.ajhg.2013.11.019
Source: PubMed


Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.

Download full-text


Available from: Ruxandra Bachmann-Gagescu, Aug 18, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar vermis hypoplasia has been associated with a large number of chromosomal abnormalities and metabolic disorders, with few candidate genes clearly linked to isolated cerebellar vermis hypoplasia. We describe on a 12-year-old boy with inferior vermian hypoplasia associated with a novel de novo microdeletion. He presented with intellectual, speech and language impairment, unilateral facial nerve weakness, marked constipation, and bilateral hand and foot anomalies that were not consistent with any previously described syndrome. His hand features were digital reductions similar to those seen in 4q34 deletion syndrome, known as the "tale of the nail" sign. Cranial magnetic resonance imaging demonstrated isolated inferior cerebellar vermis hypoplasia. A de novo 1.4 Mb interstitial deletion was identified at 8q13.1-q13.2 on chromosomal microarray. This copy number variant involves 18 human genome reference sequence genes, with 11 Mendelian Inheritance in Man genes. Homozygous mutations in one of these genes (CSPP1) has recently been recently described as causing Joubert syndrome. We propose that the constellation of clinical features in this child represents a novel microdeletion syndrome and hypothesize that CSPP1 or other genes within the deleted region contribute to the cerebellar development. Copyright © 2015 Elsevier Inc. All rights reserved.
    Pediatric Neurology 01/2014; 52. DOI:10.1016/j.pediatrneurol.2014.09.002 · 1.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar hypoplasia (CH) refers to a cerebellum with a reduced volume, and is a common, but non-specific neuroimaging finding. The etiological spectrum of CH is wide and includes both primary (malformative) and secondary (disruptive) conditions. Primary conditions include chromosomal aberrations (e.g., trisomy 13 and 18), metabolic disorders (e.g., molybdenum cofactor deficiency, Smith-Lemli-Opitz syndrome, and adenylosuccinase deficiency), genetic syndromes (e.g., Ritscher-Schinzel, Joubert, and CHARGE syndromes), and brain malformations (primary posterior fossa malformations e.g., Dandy-Walker malformation, pontine tegmental cap dysplasia and rhombencephalosynapsis, or global brain malformations such as tubulinopathies and α-dystroglycanopathies). Secondary (disruptive) conditions include prenatal infections (e.g., cytomegalovirus), exposure to teratogens, and extreme prematurity. The distinction between malformations and disruptions is important for pathogenesis and genetic counseling. Neuroimaging provides key information to categorize CH based on the pattern of involvement: unilateral CH, CH with mainly vermis involvement, global CH with involvement of both vermis and hemispheres, and pontocerebellar hypoplasia. The category of CH, associated neuroimaging findings and clinical features may suggest a specific disorder or help plan further investigations and interpret their results. Over the past decade, advances in neuroimaging and genetic testing have greatly improved clinical diagnosis, diagnostic testing, recurrence risk counseling, and information about prognosis for patients and their families. In the next decade, these advances will be translated into deeper understanding of these disorders and more specific treatments. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part C Seminars in Medical Genetics 06/2014; 166(2). DOI:10.1002/ajmg.c.31398 · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/ disassembles in a cell-cycle dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia.Disruption to the ciliary structure or its function leads to multi-organ diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies seems to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e., affecting cilia assembly) will lead to more severe symptoms, while those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
    Traffic 06/2014; 15(10). DOI:10.1111/tra.12195 · 4.35 Impact Factor
Show more